Switching to the embedded jsr166y in scala.concurrent and dropping akka.jsr166y

This commit is contained in:
Viktor Klang 2012-06-26 18:19:55 +02:00
parent 5f335cb8c8
commit 702b5d9c19
10 changed files with 4 additions and 4916 deletions

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,119 +0,0 @@
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package akka.jsr166y;
/**
* A thread managed by a {@link ForkJoinPool}, which executes
* {@link ForkJoinTask}s.
* This class is subclassable solely for the sake of adding
* functionality -- there are no overridable methods dealing with
* scheduling or execution. However, you can override initialization
* and termination methods surrounding the main task processing loop.
* If you do create such a subclass, you will also need to supply a
* custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
* in a {@code ForkJoinPool}.
*
* @since 1.7
* @author Doug Lea
*/
public class ForkJoinWorkerThread extends Thread {
/*
* ForkJoinWorkerThreads are managed by ForkJoinPools and perform
* ForkJoinTasks. For explanation, see the internal documentation
* of class ForkJoinPool.
*/
final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
final ForkJoinPool pool; // the pool this thread works in
/**
* Creates a ForkJoinWorkerThread operating in the given pool.
*
* @param pool the pool this thread works in
* @throws NullPointerException if pool is null
*/
protected ForkJoinWorkerThread(ForkJoinPool pool) {
super(pool.nextWorkerName());
setDaemon(true);
Thread.UncaughtExceptionHandler ueh = pool.ueh;
if (ueh != null)
setUncaughtExceptionHandler(ueh);
this.pool = pool;
pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
(pool, this, pool.localMode));
}
/**
* Returns the pool hosting this thread.
*
* @return the pool
*/
public ForkJoinPool getPool() {
return pool;
}
/**
* Returns the index number of this thread in its pool. The
* returned value ranges from zero to the maximum number of
* threads (minus one) that have ever been created in the pool.
* This method may be useful for applications that track status or
* collect results per-worker rather than per-task.
*
* @return the index number
*/
public int getPoolIndex() {
return workQueue.poolIndex;
}
/**
* Initializes internal state after construction but before
* processing any tasks. If you override this method, you must
* invoke {@code super.onStart()} at the beginning of the method.
* Initialization requires care: Most fields must have legal
* default values, to ensure that attempted accesses from other
* threads work correctly even before this thread starts
* processing tasks.
*/
protected void onStart() {
}
/**
* Performs cleanup associated with termination of this worker
* thread. If you override this method, you must invoke
* {@code super.onTermination} at the end of the overridden method.
*
* @param exception the exception causing this thread to abort due
* to an unrecoverable error, or {@code null} if completed normally
*/
protected void onTermination(Throwable exception) {
}
/**
* This method is required to be public, but should never be
* called explicitly. It performs the main run loop to execute
* {@link ForkJoinTask}s.
*/
public void run() {
Throwable exception = null;
try {
onStart();
pool.runWorker(workQueue);
} catch (Throwable ex) {
exception = ex;
} finally {
try {
onTermination(exception);
} catch (Throwable ex) {
if (exception == null)
exception = ex;
} finally {
pool.deregisterWorker(this, exception);
}
}
}
}

View file

@ -1,164 +0,0 @@
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package akka.jsr166y;
/**
* A recursive resultless {@link ForkJoinTask}. This class
* establishes conventions to parameterize resultless actions as
* {@code Void} {@code ForkJoinTask}s. Because {@code null} is the
* only valid value of type {@code Void}, methods such as {@code join}
* always return {@code null} upon completion.
*
* <p><b>Sample Usages.</b> Here is a simple but complete ForkJoin
* sort that sorts a given {@code long[]} array:
*
* <pre> {@code
* static class SortTask extends RecursiveAction {
* final long[] array; final int lo, hi;
* SortTask(long[] array, int lo, int hi) {
* this.array = array; this.lo = lo; this.hi = hi;
* }
* SortTask(long[] array) { this(array, 0, array.length); }
* protected void compute() {
* if (hi - lo < THRESHOLD)
* sortSequentially(lo, hi);
* else {
* int mid = (lo + hi) >>> 1;
* invokeAll(new SortTask(array, lo, mid),
* new SortTask(array, mid, hi));
* merge(lo, mid, hi);
* }
* }
* // implementation details follow:
* final static int THRESHOLD = 1000;
* void sortSequentially(int lo, int hi) {
* Arrays.sort(array, lo, hi);
* }
* void merge(int lo, int mid, int hi) {
* long[] buf = Arrays.copyOfRange(array, lo, mid);
* for (int i = 0, j = lo, k = mid; i < buf.length; j++)
* array[j] = (k == hi || buf[i] < array[k]) ?
* buf[i++] : array[k++];
* }
* }}</pre>
*
* You could then sort {@code anArray} by creating {@code new
* SortTask(anArray)} and invoking it in a ForkJoinPool. As a more
* concrete simple example, the following task increments each element
* of an array:
* <pre> {@code
* class IncrementTask extends RecursiveAction {
* final long[] array; final int lo, hi;
* IncrementTask(long[] array, int lo, int hi) {
* this.array = array; this.lo = lo; this.hi = hi;
* }
* protected void compute() {
* if (hi - lo < THRESHOLD) {
* for (int i = lo; i < hi; ++i)
* array[i]++;
* }
* else {
* int mid = (lo + hi) >>> 1;
* invokeAll(new IncrementTask(array, lo, mid),
* new IncrementTask(array, mid, hi));
* }
* }
* }}</pre>
*
* <p>The following example illustrates some refinements and idioms
* that may lead to better performance: RecursiveActions need not be
* fully recursive, so long as they maintain the basic
* divide-and-conquer approach. Here is a class that sums the squares
* of each element of a double array, by subdividing out only the
* right-hand-sides of repeated divisions by two, and keeping track of
* them with a chain of {@code next} references. It uses a dynamic
* threshold based on method {@code getSurplusQueuedTaskCount}, but
* counterbalances potential excess partitioning by directly
* performing leaf actions on unstolen tasks rather than further
* subdividing.
*
* <pre> {@code
* double sumOfSquares(ForkJoinPool pool, double[] array) {
* int n = array.length;
* Applyer a = new Applyer(array, 0, n, null);
* pool.invoke(a);
* return a.result;
* }
*
* class Applyer extends RecursiveAction {
* final double[] array;
* final int lo, hi;
* double result;
* Applyer next; // keeps track of right-hand-side tasks
* Applyer(double[] array, int lo, int hi, Applyer next) {
* this.array = array; this.lo = lo; this.hi = hi;
* this.next = next;
* }
*
* double atLeaf(int l, int h) {
* double sum = 0;
* for (int i = l; i < h; ++i) // perform leftmost base step
* sum += array[i] * array[i];
* return sum;
* }
*
* protected void compute() {
* int l = lo;
* int h = hi;
* Applyer right = null;
* while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
* int mid = (l + h) >>> 1;
* right = new Applyer(array, mid, h, right);
* right.fork();
* h = mid;
* }
* double sum = atLeaf(l, h);
* while (right != null) {
* if (right.tryUnfork()) // directly calculate if not stolen
* sum += right.atLeaf(right.lo, right.hi);
* else {
* right.join();
* sum += right.result;
* }
* right = right.next;
* }
* result = sum;
* }
* }}</pre>
*
* @since 1.7
* @author Doug Lea
*/
public abstract class RecursiveAction extends ForkJoinTask<Void> {
private static final long serialVersionUID = 5232453952276485070L;
/**
* The main computation performed by this task.
*/
protected abstract void compute();
/**
* Always returns {@code null}.
*
* @return {@code null} always
*/
public final Void getRawResult() { return null; }
/**
* Requires null completion value.
*/
protected final void setRawResult(Void mustBeNull) { }
/**
* Implements execution conventions for RecursiveActions.
*/
protected final boolean exec() {
compute();
return true;
}
}

View file

@ -1,68 +0,0 @@
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package akka.jsr166y;
/**
* A recursive result-bearing {@link ForkJoinTask}.
*
* <p>For a classic example, here is a task computing Fibonacci numbers:
*
* <pre> {@code
* class Fibonacci extends RecursiveTask<Integer> {
* final int n;
* Fibonacci(int n) { this.n = n; }
* Integer compute() {
* if (n <= 1)
* return n;
* Fibonacci f1 = new Fibonacci(n - 1);
* f1.fork();
* Fibonacci f2 = new Fibonacci(n - 2);
* return f2.compute() + f1.join();
* }
* }}</pre>
*
* However, besides being a dumb way to compute Fibonacci functions
* (there is a simple fast linear algorithm that you'd use in
* practice), this is likely to perform poorly because the smallest
* subtasks are too small to be worthwhile splitting up. Instead, as
* is the case for nearly all fork/join applications, you'd pick some
* minimum granularity size (for example 10 here) for which you always
* sequentially solve rather than subdividing.
*
* @since 1.7
* @author Doug Lea
*/
public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
private static final long serialVersionUID = 5232453952276485270L;
/**
* The result of the computation.
*/
V result;
/**
* The main computation performed by this task.
*/
protected abstract V compute();
public final V getRawResult() {
return result;
}
protected final void setRawResult(V value) {
result = value;
}
/**
* Implements execution conventions for RecursiveTask.
*/
protected final boolean exec() {
result = compute();
return true;
}
}

View file

@ -1,197 +0,0 @@
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package akka.jsr166y;
import java.util.Random;
/**
* A random number generator isolated to the current thread. Like the
* global {@link java.util.Random} generator used by the {@link
* java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
* with an internally generated seed that may not otherwise be
* modified. When applicable, use of {@code ThreadLocalRandom} rather
* than shared {@code Random} objects in concurrent programs will
* typically encounter much less overhead and contention. Use of
* {@code ThreadLocalRandom} is particularly appropriate when multiple
* tasks (for example, each a {@link ForkJoinTask}) use random numbers
* in parallel in thread pools.
*
* <p>Usages of this class should typically be of the form:
* {@code ThreadLocalRandom.current().nextX(...)} (where
* {@code X} is {@code Int}, {@code Long}, etc).
* When all usages are of this form, it is never possible to
* accidently share a {@code ThreadLocalRandom} across multiple threads.
*
* <p>This class also provides additional commonly used bounded random
* generation methods.
*
* @since 1.7
* @author Doug Lea
*/
public class ThreadLocalRandom extends Random {
// same constants as Random, but must be redeclared because private
private static final long multiplier = 0x5DEECE66DL;
private static final long addend = 0xBL;
private static final long mask = (1L << 48) - 1;
/**
* The random seed. We can't use super.seed.
*/
private long rnd;
/**
* Initialization flag to permit calls to setSeed to succeed only
* while executing the Random constructor. We can't allow others
* since it would cause setting seed in one part of a program to
* unintentionally impact other usages by the thread.
*/
boolean initialized;
// Padding to help avoid memory contention among seed updates in
// different TLRs in the common case that they are located near
// each other.
private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7;
/**
* The actual ThreadLocal
*/
private static final ThreadLocal<ThreadLocalRandom> localRandom =
new ThreadLocal<ThreadLocalRandom>() {
protected ThreadLocalRandom initialValue() {
return new ThreadLocalRandom();
}
};
/**
* Constructor called only by localRandom.initialValue.
*/
ThreadLocalRandom() {
super();
initialized = true;
}
/**
* Returns the current thread's {@code ThreadLocalRandom}.
*
* @return the current thread's {@code ThreadLocalRandom}
*/
public static ThreadLocalRandom current() {
return localRandom.get();
}
/**
* Throws {@code UnsupportedOperationException}. Setting seeds in
* this generator is not supported.
*
* @throws UnsupportedOperationException always
*/
public void setSeed(long seed) {
if (initialized)
throw new UnsupportedOperationException();
rnd = (seed ^ multiplier) & mask;
}
protected int next(int bits) {
rnd = (rnd * multiplier + addend) & mask;
return (int) (rnd >>> (48-bits));
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @throws IllegalArgumentException if least greater than or equal
* to bound
* @return the next value
*/
public int nextInt(int least, int bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextInt(bound - least) + least;
}
/**
* Returns a pseudorandom, uniformly distributed value
* between 0 (inclusive) and the specified value (exclusive).
*
* @param n the bound on the random number to be returned. Must be
* positive.
* @return the next value
* @throws IllegalArgumentException if n is not positive
*/
public long nextLong(long n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
// Divide n by two until small enough for nextInt. On each
// iteration (at most 31 of them but usually much less),
// randomly choose both whether to include high bit in result
// (offset) and whether to continue with the lower vs upper
// half (which makes a difference only if odd).
long offset = 0;
while (n >= Integer.MAX_VALUE) {
int bits = next(2);
long half = n >>> 1;
long nextn = ((bits & 2) == 0) ? half : n - half;
if ((bits & 1) == 0)
offset += n - nextn;
n = nextn;
}
return offset + nextInt((int) n);
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @return the next value
* @throws IllegalArgumentException if least greater than or equal
* to bound
*/
public long nextLong(long least, long bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextLong(bound - least) + least;
}
/**
* Returns a pseudorandom, uniformly distributed {@code double} value
* between 0 (inclusive) and the specified value (exclusive).
*
* @param n the bound on the random number to be returned. Must be
* positive.
* @return the next value
* @throws IllegalArgumentException if n is not positive
*/
public double nextDouble(double n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
return nextDouble() * n;
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @return the next value
* @throws IllegalArgumentException if least greater than or equal
* to bound
*/
public double nextDouble(double least, double bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextDouble() * (bound - least) + least;
}
private static final long serialVersionUID = -5851777807851030925L;
}

View file

@ -13,7 +13,7 @@ import akka.event.EventStream
import com.typesafe.config.Config
import akka.serialization.SerializationExtension
import akka.event.Logging.LogEventException
import akka.jsr166y.{ ForkJoinTask, ForkJoinPool }
import scala.concurrent.forkjoin.{ ForkJoinTask, ForkJoinPool }
import akka.util.{ Unsafe, Duration, NonFatal, Index }
final case class Envelope private (val message: Any, val sender: ActorRef)

View file

@ -6,7 +6,7 @@ package akka.dispatch
import java.util.Collection
import akka.util.Duration
import akka.jsr166y._
import scala.concurrent.forkjoin._
import java.util.concurrent.atomic.AtomicLong
import java.util.concurrent.ArrayBlockingQueue
import java.util.concurrent.BlockingQueue

View file

@ -15,7 +15,7 @@ import com.typesafe.config.Config
import scala.collection.JavaConversions.iterableAsScalaIterable
import java.util.concurrent.atomic.{ AtomicLong, AtomicBoolean }
import java.util.concurrent.TimeUnit
import akka.jsr166y.ThreadLocalRandom
import scala.concurrent.forkjoin.ThreadLocalRandom
import akka.util.Unsafe
import akka.dispatch.Dispatchers
import scala.annotation.tailrec

View file

@ -10,7 +10,7 @@ import akka.ConfigurationException
import akka.dispatch.Await
import akka.dispatch.MonitorableThreadFactory
import akka.event.Logging
import akka.jsr166y.ThreadLocalRandom
import scala.concurrent.forkjoin.ThreadLocalRandom
import akka.pattern._
import akka.remote._
import akka.routing._