diff --git a/akka-actor/src/main/java/akka/jsr166y/ForkJoinPool.java b/akka-actor/src/main/java/akka/jsr166y/ForkJoinPool.java deleted file mode 100644 index 4b1dd0fa1f..0000000000 --- a/akka-actor/src/main/java/akka/jsr166y/ForkJoinPool.java +++ /dev/null @@ -1,2858 +0,0 @@ -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package akka.jsr166y; -import java.util.ArrayList; -import java.util.Arrays; -import java.util.Collection; -import java.util.Collections; -import java.util.List; -import java.util.Random; -import java.util.concurrent.AbstractExecutorService; -import java.util.concurrent.Callable; -import java.util.concurrent.ExecutorService; -import java.util.concurrent.Future; -import java.util.concurrent.RejectedExecutionException; -import java.util.concurrent.RunnableFuture; -import java.util.concurrent.TimeUnit; -import java.util.concurrent.atomic.AtomicInteger; -import java.util.concurrent.atomic.AtomicLong; -import java.util.concurrent.locks.AbstractQueuedSynchronizer; -import java.util.concurrent.locks.Condition; -import akka.util.Unsafe; - -/** - * An {@link ExecutorService} for running {@link ForkJoinTask}s. - * A {@code ForkJoinPool} provides the entry point for submissions - * from non-{@code ForkJoinTask} clients, as well as management and - * monitoring operations. - * - *

A {@code ForkJoinPool} differs from other kinds of {@link - * ExecutorService} mainly by virtue of employing - * work-stealing: all threads in the pool attempt to find and - * execute tasks submitted to the pool and/or created by other active - * tasks (eventually blocking waiting for work if none exist). This - * enables efficient processing when most tasks spawn other subtasks - * (as do most {@code ForkJoinTask}s), as well as when many small - * tasks are submitted to the pool from external clients. Especially - * when setting asyncMode to true in constructors, {@code - * ForkJoinPool}s may also be appropriate for use with event-style - * tasks that are never joined. - * - *

A {@code ForkJoinPool} is constructed with a given target - * parallelism level; by default, equal to the number of available - * processors. The pool attempts to maintain enough active (or - * available) threads by dynamically adding, suspending, or resuming - * internal worker threads, even if some tasks are stalled waiting to - * join others. However, no such adjustments are guaranteed in the - * face of blocked IO or other unmanaged synchronization. The nested - * {@link ManagedBlocker} interface enables extension of the kinds of - * synchronization accommodated. - * - *

In addition to execution and lifecycle control methods, this - * class provides status check methods (for example - * {@link #getStealCount}) that are intended to aid in developing, - * tuning, and monitoring fork/join applications. Also, method - * {@link #toString} returns indications of pool state in a - * convenient form for informal monitoring. - * - *

As is the case with other ExecutorServices, there are three - * main task execution methods summarized in the following table. - * These are designed to be used primarily by clients not already - * engaged in fork/join computations in the current pool. The main - * forms of these methods accept instances of {@code ForkJoinTask}, - * but overloaded forms also allow mixed execution of plain {@code - * Runnable}- or {@code Callable}- based activities as well. However, - * tasks that are already executing in a pool should normally instead - * use the within-computation forms listed in the table unless using - * async event-style tasks that are not usually joined, in which case - * there is little difference among choice of methods. - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - *
Call from non-fork/join clients Call from within fork/join computations
Arrange async execution {@link #execute(ForkJoinTask)} {@link ForkJoinTask#fork}
Await and obtain result {@link #invoke(ForkJoinTask)} {@link ForkJoinTask#invoke}
Arrange exec and obtain Future {@link #submit(ForkJoinTask)} {@link ForkJoinTask#fork} (ForkJoinTasks are Futures)
- * - *

Sample Usage. Normally a single {@code ForkJoinPool} is - * used for all parallel task execution in a program or subsystem. - * Otherwise, use would not usually outweigh the construction and - * bookkeeping overhead of creating a large set of threads. For - * example, a common pool could be used for the {@code SortTasks} - * illustrated in {@link RecursiveAction}. Because {@code - * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon - * daemon} mode, there is typically no need to explicitly {@link - * #shutdown} such a pool upon program exit. - * - *

 {@code
- * static final ForkJoinPool mainPool = new ForkJoinPool();
- * ...
- * public void sort(long[] array) {
- *   mainPool.invoke(new SortTask(array, 0, array.length));
- * }}
- * - *

Implementation notes: This implementation restricts the - * maximum number of running threads to 32767. Attempts to create - * pools with greater than the maximum number result in - * {@code IllegalArgumentException}. - * - *

This implementation rejects submitted tasks (that is, by throwing - * {@link RejectedExecutionException}) only when the pool is shut down - * or internal resources have been exhausted. - * - * @since 1.7 - * @author Doug Lea - */ -public class ForkJoinPool extends AbstractExecutorService { - - /* - * Implementation Overview - * - * This class and its nested classes provide the main - * functionality and control for a set of worker threads: - * Submissions from non-FJ threads enter into submission queues. - * Workers take these tasks and typically split them into subtasks - * that may be stolen by other workers. Preference rules give - * first priority to processing tasks from their own queues (LIFO - * or FIFO, depending on mode), then to randomized FIFO steals of - * tasks in other queues. - * - * WorkQueues - * ========== - * - * Most operations occur within work-stealing queues (in nested - * class WorkQueue). These are special forms of Deques that - * support only three of the four possible end-operations -- push, - * pop, and poll (aka steal), under the further constraints that - * push and pop are called only from the owning thread (or, as - * extended here, under a lock), while poll may be called from - * other threads. (If you are unfamiliar with them, you probably - * want to read Herlihy and Shavit's book "The Art of - * Multiprocessor programming", chapter 16 describing these in - * more detail before proceeding.) The main work-stealing queue - * design is roughly similar to those in the papers "Dynamic - * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005 - * (http://research.sun.com/scalable/pubs/index.html) and - * "Idempotent work stealing" by Michael, Saraswat, and Vechev, - * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186). - * The main differences ultimately stem from GC requirements that - * we null out taken slots as soon as we can, to maintain as small - * a footprint as possible even in programs generating huge - * numbers of tasks. To accomplish this, we shift the CAS - * arbitrating pop vs poll (steal) from being on the indices - * ("base" and "top") to the slots themselves. So, both a - * successful pop and poll mainly entail a CAS of a slot from - * non-null to null. Because we rely on CASes of references, we - * do not need tag bits on base or top. They are simple ints as - * used in any circular array-based queue (see for example - * ArrayDeque). Updates to the indices must still be ordered in a - * way that guarantees that top == base means the queue is empty, - * but otherwise may err on the side of possibly making the queue - * appear nonempty when a push, pop, or poll have not fully - * committed. Note that this means that the poll operation, - * considered individually, is not wait-free. One thief cannot - * successfully continue until another in-progress one (or, if - * previously empty, a push) completes. However, in the - * aggregate, we ensure at least probabilistic non-blockingness. - * If an attempted steal fails, a thief always chooses a different - * random victim target to try next. So, in order for one thief to - * progress, it suffices for any in-progress poll or new push on - * any empty queue to complete. (This is why we normally use - * method pollAt and its variants that try once at the apparent - * base index, else consider alternative actions, rather than - * method poll.) - * - * This approach also enables support of a user mode in which local - * task processing is in FIFO, not LIFO order, simply by using - * poll rather than pop. This can be useful in message-passing - * frameworks in which tasks are never joined. However neither - * mode considers affinities, loads, cache localities, etc, so - * rarely provide the best possible performance on a given - * machine, but portably provide good throughput by averaging over - * these factors. (Further, even if we did try to use such - * information, we do not usually have a basis for exploiting it. - * For example, some sets of tasks profit from cache affinities, - * but others are harmed by cache pollution effects.) - * - * WorkQueues are also used in a similar way for tasks submitted - * to the pool. We cannot mix these tasks in the same queues used - * for work-stealing (this would contaminate lifo/fifo - * processing). Instead, we loosely associate submission queues - * with submitting threads, using a form of hashing. The - * ThreadLocal Submitter class contains a value initially used as - * a hash code for choosing existing queues, but may be randomly - * repositioned upon contention with other submitters. In - * essence, submitters act like workers except that they never - * take tasks, and they are multiplexed on to a finite number of - * shared work queues. However, classes are set up so that future - * extensions could allow submitters to optionally help perform - * tasks as well. Insertion of tasks in shared mode requires a - * lock (mainly to protect in the case of resizing) but we use - * only a simple spinlock (using bits in field runState), because - * submitters encountering a busy queue move on to try or create - * other queues -- they block only when creating and registering - * new queues. - * - * Management - * ========== - * - * The main throughput advantages of work-stealing stem from - * decentralized control -- workers mostly take tasks from - * themselves or each other. We cannot negate this in the - * implementation of other management responsibilities. The main - * tactic for avoiding bottlenecks is packing nearly all - * essentially atomic control state into two volatile variables - * that are by far most often read (not written) as status and - * consistency checks. - * - * Field "ctl" contains 64 bits holding all the information needed - * to atomically decide to add, inactivate, enqueue (on an event - * queue), dequeue, and/or re-activate workers. To enable this - * packing, we restrict maximum parallelism to (1<<15)-1 (which is - * far in excess of normal operating range) to allow ids, counts, - * and their negations (used for thresholding) to fit into 16bit - * fields. - * - * Field "runState" contains 32 bits needed to register and - * deregister WorkQueues, as well as to enable shutdown. It is - * only modified under a lock (normally briefly held, but - * occasionally protecting allocations and resizings) but even - * when locked remains available to check consistency. - * - * Recording WorkQueues. WorkQueues are recorded in the - * "workQueues" array that is created upon pool construction and - * expanded if necessary. Updates to the array while recording - * new workers and unrecording terminated ones are protected from - * each other by a lock but the array is otherwise concurrently - * readable, and accessed directly. To simplify index-based - * operations, the array size is always a power of two, and all - * readers must tolerate null slots. Shared (submission) queues - * are at even indices, worker queues at odd indices. Grouping - * them together in this way simplifies and speeds up task - * scanning. - * - * All worker thread creation is on-demand, triggered by task - * submissions, replacement of terminated workers, and/or - * compensation for blocked workers. However, all other support - * code is set up to work with other policies. To ensure that we - * do not hold on to worker references that would prevent GC, ALL - * accesses to workQueues are via indices into the workQueues - * array (which is one source of some of the messy code - * constructions here). In essence, the workQueues array serves as - * a weak reference mechanism. Thus for example the wait queue - * field of ctl stores indices, not references. Access to the - * workQueues in associated methods (for example signalWork) must - * both index-check and null-check the IDs. All such accesses - * ignore bad IDs by returning out early from what they are doing, - * since this can only be associated with termination, in which - * case it is OK to give up. All uses of the workQueues array - * also check that it is non-null (even if previously - * non-null). This allows nulling during termination, which is - * currently not necessary, but remains an option for - * resource-revocation-based shutdown schemes. It also helps - * reduce JIT issuance of uncommon-trap code, which tends to - * unnecessarily complicate control flow in some methods. - * - * Event Queuing. Unlike HPC work-stealing frameworks, we cannot - * let workers spin indefinitely scanning for tasks when none can - * be found immediately, and we cannot start/resume workers unless - * there appear to be tasks available. On the other hand, we must - * quickly prod them into action when new tasks are submitted or - * generated. In many usages, ramp-up time to activate workers is - * the main limiting factor in overall performance (this is - * compounded at program start-up by JIT compilation and - * allocation). So we try to streamline this as much as possible. - * We park/unpark workers after placing in an event wait queue - * when they cannot find work. This "queue" is actually a simple - * Treiber stack, headed by the "id" field of ctl, plus a 15bit - * counter value (that reflects the number of times a worker has - * been inactivated) to avoid ABA effects (we need only as many - * version numbers as worker threads). Successors are held in - * field WorkQueue.nextWait. Queuing deals with several intrinsic - * races, mainly that a task-producing thread can miss seeing (and - * signalling) another thread that gave up looking for work but - * has not yet entered the wait queue. We solve this by requiring - * a full sweep of all workers (via repeated calls to method - * scan()) both before and after a newly waiting worker is added - * to the wait queue. During a rescan, the worker might release - * some other queued worker rather than itself, which has the same - * net effect. Because enqueued workers may actually be rescanning - * rather than waiting, we set and clear the "parker" field of - * WorkQueues to reduce unnecessary calls to unpark. (This - * requires a secondary recheck to avoid missed signals.) Note - * the unusual conventions about Thread.interrupts surrounding - * parking and other blocking: Because interrupts are used solely - * to alert threads to check termination, which is checked anyway - * upon blocking, we clear status (using Thread.interrupted) - * before any call to park, so that park does not immediately - * return due to status being set via some other unrelated call to - * interrupt in user code. - * - * Signalling. We create or wake up workers only when there - * appears to be at least one task they might be able to find and - * execute. When a submission is added or another worker adds a - * task to a queue that previously had fewer than two tasks, they - * signal waiting workers (or trigger creation of new ones if - * fewer than the given parallelism level -- see signalWork). - * These primary signals are buttressed by signals during rescans; - * together these cover the signals needed in cases when more - * tasks are pushed but untaken, and improve performance compared - * to having one thread wake up all workers. - * - * Trimming workers. To release resources after periods of lack of - * use, a worker starting to wait when the pool is quiescent will - * time out and terminate if the pool has remained quiescent for - * SHRINK_RATE nanosecs. This will slowly propagate, eventually - * terminating all workers after long periods of non-use. - * - * Shutdown and Termination. A call to shutdownNow atomically sets - * a runState bit and then (non-atomically) sets each worker's - * runState status, cancels all unprocessed tasks, and wakes up - * all waiting workers. Detecting whether termination should - * commence after a non-abrupt shutdown() call requires more work - * and bookkeeping. We need consensus about quiescence (i.e., that - * there is no more work). The active count provides a primary - * indication but non-abrupt shutdown still requires a rechecking - * scan for any workers that are inactive but not queued. - * - * Joining Tasks - * ============= - * - * Any of several actions may be taken when one worker is waiting - * to join a task stolen (or always held) by another. Because we - * are multiplexing many tasks on to a pool of workers, we can't - * just let them block (as in Thread.join). We also cannot just - * reassign the joiner's run-time stack with another and replace - * it later, which would be a form of "continuation", that even if - * possible is not necessarily a good idea since we sometimes need - * both an unblocked task and its continuation to progress. - * Instead we combine two tactics: - * - * Helping: Arranging for the joiner to execute some task that it - * would be running if the steal had not occurred. - * - * Compensating: Unless there are already enough live threads, - * method tryCompensate() may create or re-activate a spare - * thread to compensate for blocked joiners until they unblock. - * - * A third form (implemented in tryRemoveAndExec and - * tryPollForAndExec) amounts to helping a hypothetical - * compensator: If we can readily tell that a possible action of a - * compensator is to steal and execute the task being joined, the - * joining thread can do so directly, without the need for a - * compensation thread (although at the expense of larger run-time - * stacks, but the tradeoff is typically worthwhile). - * - * The ManagedBlocker extension API can't use helping so relies - * only on compensation in method awaitBlocker. - * - * The algorithm in tryHelpStealer entails a form of "linear" - * helping: Each worker records (in field currentSteal) the most - * recent task it stole from some other worker. Plus, it records - * (in field currentJoin) the task it is currently actively - * joining. Method tryHelpStealer uses these markers to try to - * find a worker to help (i.e., steal back a task from and execute - * it) that could hasten completion of the actively joined task. - * In essence, the joiner executes a task that would be on its own - * local deque had the to-be-joined task not been stolen. This may - * be seen as a conservative variant of the approach in Wagner & - * Calder "Leapfrogging: a portable technique for implementing - * efficient futures" SIGPLAN Notices, 1993 - * (http://portal.acm.org/citation.cfm?id=155354). It differs in - * that: (1) We only maintain dependency links across workers upon - * steals, rather than use per-task bookkeeping. This sometimes - * requires a linear scan of workQueues array to locate stealers, - * but often doesn't because stealers leave hints (that may become - * stale/wrong) of where to locate them. A stealHint is only a - * hint because a worker might have had multiple steals and the - * hint records only one of them (usually the most current). - * Hinting isolates cost to when it is needed, rather than adding - * to per-task overhead. (2) It is "shallow", ignoring nesting - * and potentially cyclic mutual steals. (3) It is intentionally - * racy: field currentJoin is updated only while actively joining, - * which means that we miss links in the chain during long-lived - * tasks, GC stalls etc (which is OK since blocking in such cases - * is usually a good idea). (4) We bound the number of attempts - * to find work (see MAX_HELP) and fall back to suspending the - * worker and if necessary replacing it with another. - * - * It is impossible to keep exactly the target parallelism number - * of threads running at any given time. Determining the - * existence of conservatively safe helping targets, the - * availability of already-created spares, and the apparent need - * to create new spares are all racy, so we rely on multiple - * retries of each. Compensation in the apparent absence of - * helping opportunities is challenging to control on JVMs, where - * GC and other activities can stall progress of tasks that in - * turn stall out many other dependent tasks, without us being - * able to determine whether they will ever require compensation. - * Even though work-stealing otherwise encounters little - * degradation in the presence of more threads than cores, - * aggressively adding new threads in such cases entails risk of - * unwanted positive feedback control loops in which more threads - * cause more dependent stalls (as well as delayed progress of - * unblocked threads to the point that we know they are available) - * leading to more situations requiring more threads, and so - * on. This aspect of control can be seen as an (analytically - * intractable) game with an opponent that may choose the worst - * (for us) active thread to stall at any time. We take several - * precautions to bound losses (and thus bound gains), mainly in - * methods tryCompensate and awaitJoin: (1) We only try - * compensation after attempting enough helping steps (measured - * via counting and timing) that we have already consumed the - * estimated cost of creating and activating a new thread. (2) We - * allow up to 50% of threads to be blocked before initially - * adding any others, and unless completely saturated, check that - * some work is available for a new worker before adding. Also, we - * create up to only 50% more threads until entering a mode that - * only adds a thread if all others are possibly blocked. All - * together, this means that we might be half as fast to react, - * and create half as many threads as possible in the ideal case, - * but present vastly fewer anomalies in all other cases compared - * to both more aggressive and more conservative alternatives. - * - * Style notes: There is a lot of representation-level coupling - * among classes ForkJoinPool, ForkJoinWorkerThread, and - * ForkJoinTask. The fields of WorkQueue maintain data structures - * managed by ForkJoinPool, so are directly accessed. There is - * little point trying to reduce this, since any associated future - * changes in representations will need to be accompanied by - * algorithmic changes anyway. Several methods intrinsically - * sprawl because they must accumulate sets of consistent reads of - * volatiles held in local variables. Methods signalWork() and - * scan() are the main bottlenecks, so are especially heavily - * micro-optimized/mangled. There are lots of inline assignments - * (of form "while ((local = field) != 0)") which are usually the - * simplest way to ensure the required read orderings (which are - * sometimes critical). This leads to a "C"-like style of listing - * declarations of these locals at the heads of methods or blocks. - * There are several occurrences of the unusual "do {} while - * (!cas...)" which is the simplest way to force an update of a - * CAS'ed variable. There are also other coding oddities that help - * some methods perform reasonably even when interpreted (not - * compiled). - * - * The order of declarations in this file is: - * (1) Static utility functions - * (2) Nested (static) classes - * (3) Static fields - * (4) Fields, along with constants used when unpacking some of them - * (5) Internal control methods - * (6) Callbacks and other support for ForkJoinTask methods - * (7) Exported methods - * (8) Static block initializing statics in minimally dependent order - */ - - // Static utilities - - /** - * If there is a security manager, makes sure caller has - * permission to modify threads. - */ - private static void checkPermission() { - SecurityManager security = System.getSecurityManager(); - if (security != null) - security.checkPermission(modifyThreadPermission); - } - - // Nested classes - - /** - * Factory for creating new {@link ForkJoinWorkerThread}s. - * A {@code ForkJoinWorkerThreadFactory} must be defined and used - * for {@code ForkJoinWorkerThread} subclasses that extend base - * functionality or initialize threads with different contexts. - */ - public static interface ForkJoinWorkerThreadFactory { - /** - * Returns a new worker thread operating in the given pool. - * - * @param pool the pool this thread works in - * @throws NullPointerException if the pool is null - */ - public ForkJoinWorkerThread newThread(ForkJoinPool pool); - } - - /** - * Default ForkJoinWorkerThreadFactory implementation; creates a - * new ForkJoinWorkerThread. - */ - static class DefaultForkJoinWorkerThreadFactory - implements ForkJoinWorkerThreadFactory { - public ForkJoinWorkerThread newThread(ForkJoinPool pool) { - return new ForkJoinWorkerThread(pool); - } - } - - /** - * A simple non-reentrant lock used for exclusion when managing - * queues and workers. We use a custom lock so that we can readily - * probe lock state in constructions that check among alternative - * actions. The lock is normally only very briefly held, and - * sometimes treated as a spinlock, but other usages block to - * reduce overall contention in those cases where locked code - * bodies perform allocation/resizing. - */ - static final class Mutex extends AbstractQueuedSynchronizer { - public final boolean tryAcquire(int ignore) { - return compareAndSetState(0, 1); - } - public final boolean tryRelease(int ignore) { - setState(0); - return true; - } - public final void lock() { acquire(0); } - public final void unlock() { release(0); } - public final boolean isHeldExclusively() { return getState() == 1; } - public final Condition newCondition() { return new ConditionObject(); } - } - - /** - * Class for artificial tasks that are used to replace the target - * of local joins if they are removed from an interior queue slot - * in WorkQueue.tryRemoveAndExec. We don't need the proxy to - * actually do anything beyond having a unique identity. - */ - static final class EmptyTask extends ForkJoinTask { - EmptyTask() { status = ForkJoinTask.NORMAL; } // force done - public final Void getRawResult() { return null; } - public final void setRawResult(Void x) {} - public final boolean exec() { return true; } - } - - /** - * Queues supporting work-stealing as well as external task - * submission. See above for main rationale and algorithms. - * Implementation relies heavily on "Unsafe" intrinsics - * and selective use of "volatile": - * - * Field "base" is the index (mod array.length) of the least valid - * queue slot, which is always the next position to steal (poll) - * from if nonempty. Reads and writes require volatile orderings - * but not CAS, because updates are only performed after slot - * CASes. - * - * Field "top" is the index (mod array.length) of the next queue - * slot to push to or pop from. It is written only by owner thread - * for push, or under lock for trySharedPush, and accessed by - * other threads only after reading (volatile) base. Both top and - * base are allowed to wrap around on overflow, but (top - base) - * (or more commonly -(base - top) to force volatile read of base - * before top) still estimates size. - * - * The array slots are read and written using the emulation of - * volatiles/atomics provided by Unsafe. Insertions must in - * general use putOrderedObject as a form of releasing store to - * ensure that all writes to the task object are ordered before - * its publication in the queue. (Although we can avoid one case - * of this when locked in trySharedPush.) All removals entail a - * CAS to null. The array is always a power of two. To ensure - * safety of Unsafe array operations, all accesses perform - * explicit null checks and implicit bounds checks via - * power-of-two masking. - * - * In addition to basic queuing support, this class contains - * fields described elsewhere to control execution. It turns out - * to work better memory-layout-wise to include them in this - * class rather than a separate class. - * - * Performance on most platforms is very sensitive to placement of - * instances of both WorkQueues and their arrays -- we absolutely - * do not want multiple WorkQueue instances or multiple queue - * arrays sharing cache lines. (It would be best for queue objects - * and their arrays to share, but there is nothing available to - * help arrange that). Unfortunately, because they are recorded - * in a common array, WorkQueue instances are often moved to be - * adjacent by garbage collectors. To reduce impact, we use field - * padding that works OK on common platforms; this effectively - * trades off slightly slower average field access for the sake of - * avoiding really bad worst-case access. (Until better JVM - * support is in place, this padding is dependent on transient - * properties of JVM field layout rules.) We also take care in - * allocating, sizing and resizing the array. Non-shared queue - * arrays are initialized (via method growArray) by workers before - * use. Others are allocated on first use. - */ - static final class WorkQueue { - /** - * Capacity of work-stealing queue array upon initialization. - * Must be a power of two; at least 4, but should be larger to - * reduce or eliminate cacheline sharing among queues. - * Currently, it is much larger, as a partial workaround for - * the fact that JVMs often place arrays in locations that - * share GC bookkeeping (especially cardmarks) such that - * per-write accesses encounter serious memory contention. - */ - static final int INITIAL_QUEUE_CAPACITY = 1 << 13; - - /** - * Maximum size for queue arrays. Must be a power of two less - * than or equal to 1 << (31 - width of array entry) to ensure - * lack of wraparound of index calculations, but defined to a - * value a bit less than this to help users trap runaway - * programs before saturating systems. - */ - static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M - - volatile long totalSteals; // cumulative number of steals - int seed; // for random scanning; initialize nonzero - volatile int eventCount; // encoded inactivation count; < 0 if inactive - int nextWait; // encoded record of next event waiter - int rescans; // remaining scans until block - int nsteals; // top-level task executions since last idle - final int mode; // lifo, fifo, or shared - int poolIndex; // index of this queue in pool (or 0) - int stealHint; // index of most recent known stealer - volatile int runState; // 1: locked, -1: terminate; else 0 - volatile int base; // index of next slot for poll - int top; // index of next slot for push - ForkJoinTask[] array; // the elements (initially unallocated) - final ForkJoinPool pool; // the containing pool (may be null) - final ForkJoinWorkerThread owner; // owning thread or null if shared - volatile Thread parker; // == owner during call to park; else null - ForkJoinTask currentJoin; // task being joined in awaitJoin - ForkJoinTask currentSteal; // current non-local task being executed - // Heuristic padding to ameliorate unfortunate memory placements - Object p00, p01, p02, p03, p04, p05, p06, p07; - Object p08, p09, p0a, p0b, p0c, p0d, p0e; - - WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) { - this.mode = mode; - this.pool = pool; - this.owner = owner; - // Place indices in the center of array (that is not yet allocated) - base = top = INITIAL_QUEUE_CAPACITY >>> 1; - } - - /** - * Returns the approximate number of tasks in the queue. - */ - final int queueSize() { - int n = base - top; // non-owner callers must read base first - return (n >= 0) ? 0 : -n; // ignore transient negative - } - - /** - * Provides a more accurate estimate of whether this queue has - * any tasks than does queueSize, by checking whether a - * near-empty queue has at least one unclaimed task. - */ - final boolean isEmpty() { - ForkJoinTask[] a; int m, s; - int n = base - (s = top); - return (n >= 0 || - (n == -1 && - ((a = array) == null || - (m = a.length - 1) < 0 || - U.getObjectVolatile - (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null))); - } - - /** - * Pushes a task. Call only by owner in unshared queues. - * - * @param task the task. Caller must ensure non-null. - * @throw RejectedExecutionException if array cannot be resized - */ - final void push(ForkJoinTask task) { - ForkJoinTask[] a; ForkJoinPool p; - int s = top, m, n; - if ((a = array) != null) { // ignore if queue removed - U.putOrderedObject - (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task); - if ((n = (top = s + 1) - base) <= 2) { - if ((p = pool) != null) - p.signalWork(); - } - else if (n >= m) - growArray(true); - } - } - - /** - * Pushes a task if lock is free and array is either big - * enough or can be resized to be big enough. - * - * @param task the task. Caller must ensure non-null. - * @return true if submitted - */ - final boolean trySharedPush(ForkJoinTask task) { - boolean submitted = false; - if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) { - ForkJoinTask[] a = array; - int s = top; - try { - if ((a != null && a.length > s + 1 - base) || - (a = growArray(false)) != null) { // must presize - int j = (((a.length - 1) & s) << ASHIFT) + ABASE; - U.putObject(a, (long)j, task); // don't need "ordered" - top = s + 1; - submitted = true; - } - } finally { - runState = 0; // unlock - } - } - return submitted; - } - - /** - * Takes next task, if one exists, in LIFO order. Call only - * by owner in unshared queues. (We do not have a shared - * version of this method because it is never needed.) - */ - final ForkJoinTask pop() { - ForkJoinTask[] a; ForkJoinTask t; int m; - if ((a = array) != null && (m = a.length - 1) >= 0) { - for (int s; (s = top - 1) - base >= 0;) { - long j = ((m & s) << ASHIFT) + ABASE; - if ((t = (ForkJoinTask)U.getObject(a, j)) == null) - break; - if (U.compareAndSwapObject(a, j, t, null)) { - top = s; - return t; - } - } - } - return null; - } - - /** - * Takes a task in FIFO order if b is base of queue and a task - * can be claimed without contention. Specialized versions - * appear in ForkJoinPool methods scan and tryHelpStealer. - */ - final ForkJoinTask pollAt(int b) { - ForkJoinTask t; ForkJoinTask[] a; - if ((a = array) != null) { - int j = (((a.length - 1) & b) << ASHIFT) + ABASE; - if ((t = (ForkJoinTask)U.getObjectVolatile(a, j)) != null && - base == b && - U.compareAndSwapObject(a, j, t, null)) { - base = b + 1; - return t; - } - } - return null; - } - - /** - * Takes next task, if one exists, in FIFO order. - */ - final ForkJoinTask poll() { - ForkJoinTask[] a; int b; ForkJoinTask t; - while ((b = base) - top < 0 && (a = array) != null) { - int j = (((a.length - 1) & b) << ASHIFT) + ABASE; - t = (ForkJoinTask)U.getObjectVolatile(a, j); - if (t != null) { - if (base == b && - U.compareAndSwapObject(a, j, t, null)) { - base = b + 1; - return t; - } - } - else if (base == b) { - if (b + 1 == top) - break; - Thread.yield(); // wait for lagging update - } - } - return null; - } - - /** - * Takes next task, if one exists, in order specified by mode. - */ - final ForkJoinTask nextLocalTask() { - return mode == 0 ? pop() : poll(); - } - - /** - * Returns next task, if one exists, in order specified by mode. - */ - final ForkJoinTask peek() { - ForkJoinTask[] a = array; int m; - if (a == null || (m = a.length - 1) < 0) - return null; - int i = mode == 0 ? top - 1 : base; - int j = ((i & m) << ASHIFT) + ABASE; - return (ForkJoinTask)U.getObjectVolatile(a, j); - } - - /** - * Pops the given task only if it is at the current top. - */ - final boolean tryUnpush(ForkJoinTask t) { - ForkJoinTask[] a; int s; - if ((a = array) != null && (s = top) != base && - U.compareAndSwapObject - (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) { - top = s; - return true; - } - return false; - } - - /** - * Polls the given task only if it is at the current base. - */ - final boolean pollFor(ForkJoinTask task) { - ForkJoinTask[] a; int b; - if ((b = base) - top < 0 && (a = array) != null) { - int j = (((a.length - 1) & b) << ASHIFT) + ABASE; - if (U.getObjectVolatile(a, j) == task && base == b && - U.compareAndSwapObject(a, j, task, null)) { - base = b + 1; - return true; - } - } - return false; - } - - /** - * Initializes or doubles the capacity of array. Call either - * by owner or with lock held -- it is OK for base, but not - * top, to move while resizings are in progress. - * - * @param rejectOnFailure if true, throw exception if capacity - * exceeded (relayed ultimately to user); else return null. - */ - final ForkJoinTask[] growArray(boolean rejectOnFailure) { - ForkJoinTask[] oldA = array; - int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY; - if (size <= MAXIMUM_QUEUE_CAPACITY) { - int oldMask, t, b; - ForkJoinTask[] a = array = new ForkJoinTask[size]; - if (oldA != null && (oldMask = oldA.length - 1) >= 0 && - (t = top) - (b = base) > 0) { - int mask = size - 1; - do { - ForkJoinTask x; - int oldj = ((b & oldMask) << ASHIFT) + ABASE; - int j = ((b & mask) << ASHIFT) + ABASE; - x = (ForkJoinTask)U.getObjectVolatile(oldA, oldj); - if (x != null && - U.compareAndSwapObject(oldA, oldj, x, null)) - U.putObjectVolatile(a, j, x); - } while (++b != t); - } - return a; - } - else if (!rejectOnFailure) - return null; - else - throw new RejectedExecutionException("Queue capacity exceeded"); - } - - /** - * Removes and cancels all known tasks, ignoring any exceptions. - */ - final void cancelAll() { - ForkJoinTask.cancelIgnoringExceptions(currentJoin); - ForkJoinTask.cancelIgnoringExceptions(currentSteal); - for (ForkJoinTask t; (t = poll()) != null; ) - ForkJoinTask.cancelIgnoringExceptions(t); - } - - /** - * Computes next value for random probes. Scans don't require - * a very high quality generator, but also not a crummy one. - * Marsaglia xor-shift is cheap and works well enough. Note: - * This is manually inlined in its usages in ForkJoinPool to - * avoid writes inside busy scan loops. - */ - final int nextSeed() { - int r = seed; - r ^= r << 13; - r ^= r >>> 17; - return seed = r ^= r << 5; - } - - // Execution methods - - /** - * Pops and runs tasks until empty. - */ - private void popAndExecAll() { - // A bit faster than repeated pop calls - ForkJoinTask[] a; int m, s; long j; ForkJoinTask t; - while ((a = array) != null && (m = a.length - 1) >= 0 && - (s = top - 1) - base >= 0 && - (t = ((ForkJoinTask) - U.getObject(a, j = ((m & s) << ASHIFT) + ABASE))) - != null) { - if (U.compareAndSwapObject(a, j, t, null)) { - top = s; - t.doExec(); - } - } - } - - /** - * Polls and runs tasks until empty. - */ - private void pollAndExecAll() { - for (ForkJoinTask t; (t = poll()) != null;) - t.doExec(); - } - - /** - * If present, removes from queue and executes the given task, or - * any other cancelled task. Returns (true) immediately on any CAS - * or consistency check failure so caller can retry. - * - * @return false if no progress can be made - */ - final boolean tryRemoveAndExec(ForkJoinTask task) { - boolean removed = false, empty = true, progress = true; - ForkJoinTask[] a; int m, s, b, n; - if ((a = array) != null && (m = a.length - 1) >= 0 && - (n = (s = top) - (b = base)) > 0) { - for (ForkJoinTask t;;) { // traverse from s to b - int j = ((--s & m) << ASHIFT) + ABASE; - t = (ForkJoinTask)U.getObjectVolatile(a, j); - if (t == null) // inconsistent length - break; - else if (t == task) { - if (s + 1 == top) { // pop - if (!U.compareAndSwapObject(a, j, task, null)) - break; - top = s; - removed = true; - } - else if (base == b) // replace with proxy - removed = U.compareAndSwapObject(a, j, task, - new EmptyTask()); - break; - } - else if (t.status >= 0) - empty = false; - else if (s + 1 == top) { // pop and throw away - if (U.compareAndSwapObject(a, j, t, null)) - top = s; - break; - } - if (--n == 0) { - if (!empty && base == b) - progress = false; - break; - } - } - } - if (removed) - task.doExec(); - return progress; - } - - /** - * Executes a top-level task and any local tasks remaining - * after execution. - */ - final void runTask(ForkJoinTask t) { - if (t != null) { - currentSteal = t; - t.doExec(); - if (top != base) { // process remaining local tasks - if (mode == 0) - popAndExecAll(); - else - pollAndExecAll(); - } - ++nsteals; - currentSteal = null; - } - } - - /** - * Executes a non-top-level (stolen) task. - */ - final void runSubtask(ForkJoinTask t) { - if (t != null) { - ForkJoinTask ps = currentSteal; - currentSteal = t; - t.doExec(); - currentSteal = ps; - } - } - - /** - * Returns true if owned and not known to be blocked. - */ - final boolean isApparentlyUnblocked() { - Thread wt; Thread.State s; - return (eventCount >= 0 && - (wt = owner) != null && - (s = wt.getState()) != Thread.State.BLOCKED && - s != Thread.State.WAITING && - s != Thread.State.TIMED_WAITING); - } - - /** - * If this owned and is not already interrupted, try to - * interrupt and/or unpark, ignoring exceptions. - */ - final void interruptOwner() { - Thread wt, p; - if ((wt = owner) != null && !wt.isInterrupted()) { - try { - wt.interrupt(); - } catch (SecurityException ignore) { - } - } - if ((p = parker) != null) - U.unpark(p); - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long RUNSTATE; - private static final int ABASE; - private static final int ASHIFT; - static { - int s; - try { - U = getUnsafe(); - Class k = WorkQueue.class; - Class ak = ForkJoinTask[].class; - RUNSTATE = U.objectFieldOffset - (k.getDeclaredField("runState")); - ABASE = U.arrayBaseOffset(ak); - s = U.arrayIndexScale(ak); - } catch (Exception e) { - throw new Error(e); - } - if ((s & (s-1)) != 0) - throw new Error("data type scale not a power of two"); - ASHIFT = 31 - Integer.numberOfLeadingZeros(s); - } - } - - /** - * Per-thread records for threads that submit to pools. Currently - * holds only pseudo-random seed / index that is used to choose - * submission queues in method doSubmit. In the future, this may - * also incorporate a means to implement different task rejection - * and resubmission policies. - * - * Seeds for submitters and workers/workQueues work in basically - * the same way but are initialized and updated using slightly - * different mechanics. Both are initialized using the same - * approach as in class ThreadLocal, where successive values are - * unlikely to collide with previous values. This is done during - * registration for workers, but requires a separate AtomicInteger - * for submitters. Seeds are then randomly modified upon - * collisions using xorshifts, which requires a non-zero seed. - */ - static final class Submitter { - int seed; - Submitter() { - int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT); - seed = (s == 0) ? 1 : s; // ensure non-zero - } - } - - /** ThreadLocal class for Submitters */ - static final class ThreadSubmitter extends ThreadLocal { - public Submitter initialValue() { return new Submitter(); } - } - - // static fields (initialized in static initializer below) - - /** - * Creates a new ForkJoinWorkerThread. This factory is used unless - * overridden in ForkJoinPool constructors. - */ - public static final ForkJoinWorkerThreadFactory - defaultForkJoinWorkerThreadFactory; - - /** - * Generator for assigning sequence numbers as pool names. - */ - private static final AtomicInteger poolNumberGenerator; - - /** - * Generator for initial hashes/seeds for submitters. Accessed by - * Submitter class constructor. - */ - static final AtomicInteger nextSubmitterSeed; - - /** - * Permission required for callers of methods that may start or - * kill threads. - */ - private static final RuntimePermission modifyThreadPermission; - - /** - * Per-thread submission bookeeping. Shared across all pools - * to reduce ThreadLocal pollution and because random motion - * to avoid contention in one pool is likely to hold for others. - */ - private static final ThreadSubmitter submitters; - - // static constants - - /** - * The wakeup interval (in nanoseconds) for a worker waiting for a - * task when the pool is quiescent to instead try to shrink the - * number of workers. The exact value does not matter too - * much. It must be short enough to release resources during - * sustained periods of idleness, but not so short that threads - * are continually re-created. - */ - private static final long SHRINK_RATE = - 4L * 1000L * 1000L * 1000L; // 4 seconds - - /** - * The timeout value for attempted shrinkage, includes - * some slop to cope with system timer imprecision. - */ - private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10); - - /** - * The maximum stolen->joining link depth allowed in method - * tryHelpStealer. Must be a power of two. This value also - * controls the maximum number of times to try to help join a task - * without any apparent progress or change in pool state before - * giving up and blocking (see awaitJoin). Depths for legitimate - * chains are unbounded, but we use a fixed constant to avoid - * (otherwise unchecked) cycles and to bound staleness of - * traversal parameters at the expense of sometimes blocking when - * we could be helping. - */ - private static final int MAX_HELP = 32; - - /** - * Secondary time-based bound (in nanosecs) for helping attempts - * before trying compensated blocking in awaitJoin. Used in - * conjunction with MAX_HELP to reduce variance due to different - * polling rates associated with different helping options. The - * value should roughly approximate the time required to create - * and/or activate a worker thread. - */ - private static final long COMPENSATION_DELAY = 100L * 1000L; // 0.1 millisec - - /** - * Increment for seed generators. See class ThreadLocal for - * explanation. - */ - private static final int SEED_INCREMENT = 0x61c88647; - - /** - * Bits and masks for control variables - * - * Field ctl is a long packed with: - * AC: Number of active running workers minus target parallelism (16 bits) - * TC: Number of total workers minus target parallelism (16 bits) - * ST: true if pool is terminating (1 bit) - * EC: the wait count of top waiting thread (15 bits) - * ID: poolIndex of top of Treiber stack of waiters (16 bits) - * - * When convenient, we can extract the upper 32 bits of counts and - * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e = - * (int)ctl. The ec field is never accessed alone, but always - * together with id and st. The offsets of counts by the target - * parallelism and the positionings of fields makes it possible to - * perform the most common checks via sign tests of fields: When - * ac is negative, there are not enough active workers, when tc is - * negative, there are not enough total workers, and when e is - * negative, the pool is terminating. To deal with these possibly - * negative fields, we use casts in and out of "short" and/or - * signed shifts to maintain signedness. - * - * When a thread is queued (inactivated), its eventCount field is - * set negative, which is the only way to tell if a worker is - * prevented from executing tasks, even though it must continue to - * scan for them to avoid queuing races. Note however that - * eventCount updates lag releases so usage requires care. - * - * Field runState is an int packed with: - * SHUTDOWN: true if shutdown is enabled (1 bit) - * SEQ: a sequence number updated upon (de)registering workers (30 bits) - * INIT: set true after workQueues array construction (1 bit) - * - * The sequence number enables simple consistency checks: - * Staleness of read-only operations on the workQueues array can - * be checked by comparing runState before vs after the reads. - */ - - // bit positions/shifts for fields - private static final int AC_SHIFT = 48; - private static final int TC_SHIFT = 32; - private static final int ST_SHIFT = 31; - private static final int EC_SHIFT = 16; - - // bounds - private static final int SMASK = 0xffff; // short bits - private static final int MAX_CAP = 0x7fff; // max #workers - 1 - private static final int SQMASK = 0xfffe; // even short bits - private static final int SHORT_SIGN = 1 << 15; - private static final int INT_SIGN = 1 << 31; - - // masks - private static final long STOP_BIT = 0x0001L << ST_SHIFT; - private static final long AC_MASK = ((long)SMASK) << AC_SHIFT; - private static final long TC_MASK = ((long)SMASK) << TC_SHIFT; - - // units for incrementing and decrementing - private static final long TC_UNIT = 1L << TC_SHIFT; - private static final long AC_UNIT = 1L << AC_SHIFT; - - // masks and units for dealing with u = (int)(ctl >>> 32) - private static final int UAC_SHIFT = AC_SHIFT - 32; - private static final int UTC_SHIFT = TC_SHIFT - 32; - private static final int UAC_MASK = SMASK << UAC_SHIFT; - private static final int UTC_MASK = SMASK << UTC_SHIFT; - private static final int UAC_UNIT = 1 << UAC_SHIFT; - private static final int UTC_UNIT = 1 << UTC_SHIFT; - - // masks and units for dealing with e = (int)ctl - private static final int E_MASK = 0x7fffffff; // no STOP_BIT - private static final int E_SEQ = 1 << EC_SHIFT; - - // runState bits - private static final int SHUTDOWN = 1 << 31; - - // access mode for WorkQueue - static final int LIFO_QUEUE = 0; - static final int FIFO_QUEUE = 1; - static final int SHARED_QUEUE = -1; - - // Instance fields - - /* - * Field layout order in this class tends to matter more than one - * would like. Runtime layout order is only loosely related to - * declaration order and may differ across JVMs, but the following - * empirically works OK on current JVMs. - */ - - volatile long ctl; // main pool control - final int parallelism; // parallelism level - final int localMode; // per-worker scheduling mode - final int submitMask; // submit queue index bound - int nextSeed; // for initializing worker seeds - volatile int runState; // shutdown status and seq - WorkQueue[] workQueues; // main registry - final Mutex lock; // for registration - final Condition termination; // for awaitTermination - final ForkJoinWorkerThreadFactory factory; // factory for new workers - final Thread.UncaughtExceptionHandler ueh; // per-worker UEH - final AtomicLong stealCount; // collect counts when terminated - final AtomicInteger nextWorkerNumber; // to create worker name string - final String workerNamePrefix; // to create worker name string - - // Creating, registering, and deregistering workers - - /** - * Tries to create and start a worker - */ - private void addWorker() { - Throwable ex = null; - ForkJoinWorkerThread wt = null; - try { - if ((wt = factory.newThread(this)) != null) { - wt.start(); - return; - } - } catch (Throwable e) { - ex = e; - } - deregisterWorker(wt, ex); // adjust counts etc on failure - } - - /** - * Callback from ForkJoinWorkerThread constructor to assign a - * public name. This must be separate from registerWorker because - * it is called during the "super" constructor call in - * ForkJoinWorkerThread. - */ - final String nextWorkerName() { - return workerNamePrefix.concat - (Integer.toString(nextWorkerNumber.addAndGet(1))); - } - - /** - * Callback from ForkJoinWorkerThread constructor to establish its - * poolIndex and record its WorkQueue. To avoid scanning bias due - * to packing entries in front of the workQueues array, we treat - * the array as a simple power-of-two hash table using per-thread - * seed as hash, expanding as needed. - * - * @param w the worker's queue - */ - final void registerWorker(WorkQueue w) { - Mutex lock = this.lock; - lock.lock(); - try { - WorkQueue[] ws = workQueues; - if (w != null && ws != null) { // skip on shutdown/failure - int rs, n = ws.length, m = n - 1; - int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence - w.seed = (s == 0) ? 1 : s; // ensure non-zero seed - int r = (s << 1) | 1; // use odd-numbered indices - if (ws[r &= m] != null) { // collision - int probes = 0; // step by approx half size - int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2; - while (ws[r = (r + step) & m] != null) { - if (++probes >= n) { - workQueues = ws = Arrays.copyOf(ws, n <<= 1); - m = n - 1; - probes = 0; - } - } - } - w.eventCount = w.poolIndex = r; // establish before recording - ws[r] = w; // also update seq - runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN); - } - } finally { - lock.unlock(); - } - } - - /** - * Final callback from terminating worker, as well as upon failure - * to construct or start a worker in addWorker. Removes record of - * worker from array, and adjusts counts. If pool is shutting - * down, tries to complete termination. - * - * @param wt the worker thread or null if addWorker failed - * @param ex the exception causing failure, or null if none - */ - final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) { - Mutex lock = this.lock; - WorkQueue w = null; - if (wt != null && (w = wt.workQueue) != null) { - w.runState = -1; // ensure runState is set - stealCount.getAndAdd(w.totalSteals + w.nsteals); - int idx = w.poolIndex; - lock.lock(); - try { // remove record from array - WorkQueue[] ws = workQueues; - if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) - ws[idx] = null; - } finally { - lock.unlock(); - } - } - - long c; // adjust ctl counts - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) | - ((c - TC_UNIT) & TC_MASK) | - (c & ~(AC_MASK|TC_MASK))))); - - if (!tryTerminate(false, false) && w != null) { - w.cancelAll(); // cancel remaining tasks - if (w.array != null) // suppress signal if never ran - signalWork(); // wake up or create replacement - if (ex == null) // help clean refs on way out - ForkJoinTask.helpExpungeStaleExceptions(); - } - - if (ex != null) // rethrow - U.throwException(ex); - } - - - // Submissions - - /** - * Unless shutting down, adds the given task to a submission queue - * at submitter's current queue index (modulo submission - * range). If no queue exists at the index, one is created. If - * the queue is busy, another index is randomly chosen. The - * submitMask bounds the effective number of queues to the - * (nearest power of two for) parallelism level. - * - * @param task the task. Caller must ensure non-null. - */ - private void doSubmit(ForkJoinTask task) { - Submitter s = submitters.get(); - for (int r = s.seed, m = submitMask;;) { - WorkQueue[] ws; WorkQueue q; - int k = r & m & SQMASK; // use only even indices - if (runState < 0 || (ws = workQueues) == null || ws.length <= k) - throw new RejectedExecutionException(); // shutting down - else if ((q = ws[k]) == null) { // create new queue - WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE); - Mutex lock = this.lock; // construct outside lock - lock.lock(); - try { // recheck under lock - int rs = runState; // to update seq - if (ws == workQueues && ws[k] == null) { - ws[k] = nq; - runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN)); - } - } finally { - lock.unlock(); - } - } - else if (q.trySharedPush(task)) { - signalWork(); - return; - } - else if (m > 1) { // move to a different index - r ^= r << 13; // same xorshift as WorkQueues - r ^= r >>> 17; - s.seed = r ^= r << 5; - } - else - Thread.yield(); // yield if no alternatives - } - } - - // Maintaining ctl counts - - /** - * Increments active count; mainly called upon return from blocking. - */ - final void incrementActiveCount() { - long c; - do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT)); - } - - /** - * Tries to activate or create a worker if too few are active. - */ - final void signalWork() { - long c; int u; - while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active - WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p; - if ((e = (int)c) > 0) { // at least one waiting - if (ws != null && (i = e & SMASK) < ws.length && - (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) { - long nc = (((long)(w.nextWait & E_MASK)) | - ((long)(u + UAC_UNIT) << 32)); - if (U.compareAndSwapLong(this, CTL, c, nc)) { - w.eventCount = (e + E_SEQ) & E_MASK; - if ((p = w.parker) != null) - U.unpark(p); // activate and release - break; - } - } - else - break; - } - else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total - long nc = (long)(((u + UTC_UNIT) & UTC_MASK) | - ((u + UAC_UNIT) & UAC_MASK)) << 32; - if (U.compareAndSwapLong(this, CTL, c, nc)) { - addWorker(); - break; - } - } - else - break; - } - } - - - // Scanning for tasks - - /** - * Top-level runloop for workers, called by ForkJoinWorkerThread.run. - */ - final void runWorker(WorkQueue w) { - w.growArray(false); // initialize queue array in this thread - do { w.runTask(scan(w)); } while (w.runState >= 0); - } - - /** - * Scans for and, if found, returns one task, else possibly - * inactivates the worker. This method operates on single reads of - * volatile state and is designed to be re-invoked continuously, - * in part because it returns upon detecting inconsistencies, - * contention, or state changes that indicate possible success on - * re-invocation. - * - * The scan searches for tasks across a random permutation of - * queues (starting at a random index and stepping by a random - * relative prime, checking each at least once). The scan - * terminates upon either finding a non-empty queue, or completing - * the sweep. If the worker is not inactivated, it takes and - * returns a task from this queue. On failure to find a task, we - * take one of the following actions, after which the caller will - * retry calling this method unless terminated. - * - * * If pool is terminating, terminate the worker. - * - * * If not a complete sweep, try to release a waiting worker. If - * the scan terminated because the worker is inactivated, then the - * released worker will often be the calling worker, and it can - * succeed obtaining a task on the next call. Or maybe it is - * another worker, but with same net effect. Releasing in other - * cases as well ensures that we have enough workers running. - * - * * If not already enqueued, try to inactivate and enqueue the - * worker on wait queue. Or, if inactivating has caused the pool - * to be quiescent, relay to idleAwaitWork to check for - * termination and possibly shrink pool. - * - * * If already inactive, and the caller has run a task since the - * last empty scan, return (to allow rescan) unless others are - * also inactivated. Field WorkQueue.rescans counts down on each - * scan to ensure eventual inactivation and blocking. - * - * * If already enqueued and none of the above apply, park - * awaiting signal, - * - * @param w the worker (via its WorkQueue) - * @return a task or null of none found - */ - private final ForkJoinTask scan(WorkQueue w) { - WorkQueue[] ws; // first update random seed - int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5; - int rs = runState, m; // volatile read order matters - if ((ws = workQueues) != null && (m = ws.length - 1) > 0) { - int ec = w.eventCount; // ec is negative if inactive - int step = (r >>> 16) | 1; // relative prime - for (int j = (m + 1) << 2; ; r += step) { - WorkQueue q; ForkJoinTask t; ForkJoinTask[] a; int b; - if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 && - (a = q.array) != null) { // probably nonempty - int i = (((a.length - 1) & b) << ASHIFT) + ABASE; - t = (ForkJoinTask)U.getObjectVolatile(a, i); - if (q.base == b && ec >= 0 && t != null && - U.compareAndSwapObject(a, i, t, null)) { - q.base = b + 1; // specialization of pollAt - return t; - } - else if (ec < 0 || j <= m) { - rs = 0; // mark scan as imcomplete - break; // caller can retry after release - } - } - if (--j < 0) - break; - } - long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns; - if (e < 0) // decode ctl on empty scan - w.runState = -1; // pool is terminating - else if (rs == 0 || rs != runState) { // incomplete scan - WorkQueue v; Thread p; // try to release a waiter - if (e > 0 && a < 0 && w.eventCount == ec && - (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) { - long nc = ((long)(v.nextWait & E_MASK) | - ((c + AC_UNIT) & (AC_MASK|TC_MASK))); - if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) { - v.eventCount = (e + E_SEQ) & E_MASK; - if ((p = v.parker) != null) - U.unpark(p); - } - } - } - else if (ec >= 0) { // try to enqueue/inactivate - long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)); - w.nextWait = e; - w.eventCount = ec | INT_SIGN; // mark as inactive - if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc)) - w.eventCount = ec; // unmark on CAS failure - else { - if ((ns = w.nsteals) != 0) { - w.nsteals = 0; // set rescans if ran task - w.rescans = (a > 0) ? 0 : a + parallelism; - w.totalSteals += ns; - } - if (a == 1 - parallelism) // quiescent - idleAwaitWork(w, nc, c); - } - } - else if (w.eventCount < 0) { // already queued - if ((nr = w.rescans) > 0) { // continue rescanning - int ac = a + parallelism; - if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0) - Thread.yield(); // yield before block - } - else { - Thread.interrupted(); // clear status - Thread wt = Thread.currentThread(); - U.putObject(wt, PARKBLOCKER, this); - w.parker = wt; // emulate LockSupport.park - if (w.eventCount < 0) // recheck - U.park(false, 0L); - w.parker = null; - U.putObject(wt, PARKBLOCKER, null); - } - } - } - return null; - } - - /** - * If inactivating worker w has caused the pool to become - * quiescent, checks for pool termination, and, so long as this is - * not the only worker, waits for event for up to SHRINK_RATE - * nanosecs. On timeout, if ctl has not changed, terminates the - * worker, which will in turn wake up another worker to possibly - * repeat this process. - * - * @param w the calling worker - * @param currentCtl the ctl value triggering possible quiescence - * @param prevCtl the ctl value to restore if thread is terminated - */ - private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) { - if (w.eventCount < 0 && !tryTerminate(false, false) && - (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) { - Thread wt = Thread.currentThread(); - Thread.yield(); // yield before block - while (ctl == currentCtl) { - long startTime = System.nanoTime(); - Thread.interrupted(); // timed variant of version in scan() - U.putObject(wt, PARKBLOCKER, this); - w.parker = wt; - if (ctl == currentCtl) - U.park(false, SHRINK_RATE); - w.parker = null; - U.putObject(wt, PARKBLOCKER, null); - if (ctl != currentCtl) - break; - if (System.nanoTime() - startTime >= SHRINK_TIMEOUT && - U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) { - w.eventCount = (w.eventCount + E_SEQ) | E_MASK; - w.runState = -1; // shrink - break; - } - } - } - } - - /** - * Tries to locate and execute tasks for a stealer of the given - * task, or in turn one of its stealers, Traces currentSteal -> - * currentJoin links looking for a thread working on a descendant - * of the given task and with a non-empty queue to steal back and - * execute tasks from. The first call to this method upon a - * waiting join will often entail scanning/search, (which is OK - * because the joiner has nothing better to do), but this method - * leaves hints in workers to speed up subsequent calls. The - * implementation is very branchy to cope with potential - * inconsistencies or loops encountering chains that are stale, - * unknown, or so long that they are likely cyclic. All of these - * cases are dealt with by just retrying by caller. - * - * @param joiner the joining worker - * @param task the task to join - * @return true if found or ran a task (and so is immediately retryable) - */ - private boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask task) { - WorkQueue[] ws; - int m, depth = MAX_HELP; // remaining chain depth - boolean progress = false; - if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && - task.status >= 0) { - ForkJoinTask subtask = task; // current target - outer: for (WorkQueue j = joiner;;) { - WorkQueue stealer = null; // find stealer of subtask - WorkQueue v = ws[j.stealHint & m]; // try hint - if (v != null && v.currentSteal == subtask) - stealer = v; - else { // scan - for (int i = 1; i <= m; i += 2) { - if ((v = ws[i]) != null && v.currentSteal == subtask && - v != joiner) { - stealer = v; - j.stealHint = i; // save hint - break; - } - } - if (stealer == null) - break; - } - - for (WorkQueue q = stealer;;) { // try to help stealer - ForkJoinTask[] a; ForkJoinTask t; int b; - if (task.status < 0) - break outer; - if ((b = q.base) - q.top < 0 && (a = q.array) != null) { - progress = true; - int i = (((a.length - 1) & b) << ASHIFT) + ABASE; - t = (ForkJoinTask)U.getObjectVolatile(a, i); - if (subtask.status < 0) // must recheck before taking - break outer; - if (t != null && - q.base == b && - U.compareAndSwapObject(a, i, t, null)) { - q.base = b + 1; - joiner.runSubtask(t); - } - else if (q.base == b) - break outer; // possibly stalled - } - else { // descend - ForkJoinTask next = stealer.currentJoin; - if (--depth <= 0 || subtask.status < 0 || - next == null || next == subtask) - break outer; // stale, dead-end, or cyclic - subtask = next; - j = stealer; - break; - } - } - } - } - return progress; - } - - /** - * If task is at base of some steal queue, steals and executes it. - * - * @param joiner the joining worker - * @param task the task - */ - private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask task) { - WorkQueue[] ws; - if ((ws = workQueues) != null) { - for (int j = 1; j < ws.length && task.status >= 0; j += 2) { - WorkQueue q = ws[j]; - if (q != null && q.pollFor(task)) { - joiner.runSubtask(task); - break; - } - } - } - } - - /** - * Tries to decrement active count (sometimes implicitly) and - * possibly release or create a compensating worker in preparation - * for blocking. Fails on contention or termination. Otherwise, - * adds a new thread if no idle workers are available and either - * pool would become completely starved or: (at least half - * starved, and fewer than 50% spares exist, and there is at least - * one task apparently available). Even though the availability - * check requires a full scan, it is worthwhile in reducing false - * alarms. - * - * @param task if non-null, a task being waited for - * @param blocker if non-null, a blocker being waited for - * @return true if the caller can block, else should recheck and retry - */ - final boolean tryCompensate(ForkJoinTask task, ManagedBlocker blocker) { - int pc = parallelism, e; - long c = ctl; - WorkQueue[] ws = workQueues; - if ((e = (int)c) >= 0 && ws != null) { - int u, a, ac, hc; - int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc; - boolean replace = false; - if ((a = u >> UAC_SHIFT) <= 0) { - if ((ac = a + pc) <= 1) - replace = true; - else if ((e > 0 || (task != null && - ac <= (hc = pc >>> 1) && tc < pc + hc))) { - WorkQueue w; - for (int j = 0; j < ws.length; ++j) { - if ((w = ws[j]) != null && !w.isEmpty()) { - replace = true; - break; // in compensation range and tasks available - } - } - } - } - if ((task == null || task.status >= 0) && // recheck need to block - (blocker == null || !blocker.isReleasable()) && ctl == c) { - if (!replace) { // no compensation - long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK); - if (U.compareAndSwapLong(this, CTL, c, nc)) - return true; - } - else if (e != 0) { // release an idle worker - WorkQueue w; Thread p; int i; - if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) { - long nc = ((long)(w.nextWait & E_MASK) | - (c & (AC_MASK|TC_MASK))); - if (w.eventCount == (e | INT_SIGN) && - U.compareAndSwapLong(this, CTL, c, nc)) { - w.eventCount = (e + E_SEQ) & E_MASK; - if ((p = w.parker) != null) - U.unpark(p); - return true; - } - } - } - else if (tc < MAX_CAP) { // create replacement - long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); - if (U.compareAndSwapLong(this, CTL, c, nc)) { - addWorker(); - return true; - } - } - } - } - return false; - } - - /** - * Helps and/or blocks until the given task is done. - * - * @param joiner the joining worker - * @param task the task - * @return task status on exit - */ - final int awaitJoin(WorkQueue joiner, ForkJoinTask task) { - int s; - ForkJoinTask prevJoin = joiner.currentJoin; - if ((s = task.status) >= 0) { - joiner.currentJoin = task; - long startTime = 0L; - for (int k = 0;;) { - if ((joiner.isEmpty() ? // try to help - !tryHelpStealer(joiner, task) : - !joiner.tryRemoveAndExec(task))) { - if (k == 0) { - startTime = System.nanoTime(); - tryPollForAndExec(joiner, task); // check uncommon case - } - else if ((k & (MAX_HELP - 1)) == 0 && - System.nanoTime() - startTime >= - COMPENSATION_DELAY && - tryCompensate(task, null)) { - if (task.trySetSignal() && task.status >= 0) { - synchronized (task) { - if (task.status >= 0) { - try { // see ForkJoinTask - task.wait(); // for explanation - } catch (InterruptedException ie) { - } - } - else - task.notifyAll(); - } - } - long c; // re-activate - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c + AC_UNIT)); - } - } - if ((s = task.status) < 0) { - joiner.currentJoin = prevJoin; - break; - } - else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1) - Thread.yield(); // for politeness - } - } - return s; - } - - /** - * Stripped-down variant of awaitJoin used by timed joins. Tries - * to help join only while there is continuous progress. (Caller - * will then enter a timed wait.) - * - * @param joiner the joining worker - * @param task the task - * @return task status on exit - */ - final int helpJoinOnce(WorkQueue joiner, ForkJoinTask task) { - int s; - while ((s = task.status) >= 0 && - (joiner.isEmpty() ? - tryHelpStealer(joiner, task) : - joiner.tryRemoveAndExec(task))) - ; - return s; - } - - /** - * Returns a (probably) non-empty steal queue, if one is found - * during a random, then cyclic scan, else null. This method must - * be retried by caller if, by the time it tries to use the queue, - * it is empty. - */ - private WorkQueue findNonEmptyStealQueue(WorkQueue w) { - // Similar to loop in scan(), but ignoring submissions - int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5; - int step = (r >>> 16) | 1; - for (WorkQueue[] ws;;) { - int rs = runState, m; - if ((ws = workQueues) == null || (m = ws.length - 1) < 1) - return null; - for (int j = (m + 1) << 2; ; r += step) { - WorkQueue q = ws[((r << 1) | 1) & m]; - if (q != null && !q.isEmpty()) - return q; - else if (--j < 0) { - if (runState == rs) - return null; - break; - } - } - } - } - - /** - * Runs tasks until {@code isQuiescent()}. We piggyback on - * active count ctl maintenance, but rather than blocking - * when tasks cannot be found, we rescan until all others cannot - * find tasks either. - */ - final void helpQuiescePool(WorkQueue w) { - for (boolean active = true;;) { - ForkJoinTask localTask; // exhaust local queue - while ((localTask = w.nextLocalTask()) != null) - localTask.doExec(); - WorkQueue q = findNonEmptyStealQueue(w); - if (q != null) { - ForkJoinTask t; int b; - if (!active) { // re-establish active count - long c; - active = true; - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c + AC_UNIT)); - } - if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) - w.runSubtask(t); - } - else { - long c; - if (active) { // decrement active count without queuing - active = false; - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c -= AC_UNIT)); - } - else - c = ctl; // re-increment on exit - if ((int)(c >> AC_SHIFT) + parallelism == 0) { - do {} while (!U.compareAndSwapLong - (this, CTL, c = ctl, c + AC_UNIT)); - break; - } - } - } - } - - /** - * Gets and removes a local or stolen task for the given worker. - * - * @return a task, if available - */ - final ForkJoinTask nextTaskFor(WorkQueue w) { - for (ForkJoinTask t;;) { - WorkQueue q; int b; - if ((t = w.nextLocalTask()) != null) - return t; - if ((q = findNonEmptyStealQueue(w)) == null) - return null; - if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) - return t; - } - } - - /** - * Returns the approximate (non-atomic) number of idle threads per - * active thread to offset steal queue size for method - * ForkJoinTask.getSurplusQueuedTaskCount(). - */ - final int idlePerActive() { - // Approximate at powers of two for small values, saturate past 4 - int p = parallelism; - int a = p + (int)(ctl >> AC_SHIFT); - return (a > (p >>>= 1) ? 0 : - a > (p >>>= 1) ? 1 : - a > (p >>>= 1) ? 2 : - a > (p >>>= 1) ? 4 : - 8); - } - - // Termination - - /** - * Possibly initiates and/or completes termination. The caller - * triggering termination runs three passes through workQueues: - * (0) Setting termination status, followed by wakeups of queued - * workers; (1) cancelling all tasks; (2) interrupting lagging - * threads (likely in external tasks, but possibly also blocked in - * joins). Each pass repeats previous steps because of potential - * lagging thread creation. - * - * @param now if true, unconditionally terminate, else only - * if no work and no active workers - * @param enable if true, enable shutdown when next possible - * @return true if now terminating or terminated - */ - private boolean tryTerminate(boolean now, boolean enable) { - Mutex lock = this.lock; - for (long c;;) { - if (((c = ctl) & STOP_BIT) != 0) { // already terminating - if ((short)(c >>> TC_SHIFT) == -parallelism) { - lock.lock(); // don't need try/finally - termination.signalAll(); // signal when 0 workers - lock.unlock(); - } - return true; - } - if (runState >= 0) { // not yet enabled - if (!enable) - return false; - lock.lock(); - runState |= SHUTDOWN; - lock.unlock(); - } - if (!now) { // check if idle & no tasks - if ((int)(c >> AC_SHIFT) != -parallelism || - hasQueuedSubmissions()) - return false; - // Check for unqueued inactive workers. One pass suffices. - WorkQueue[] ws = workQueues; WorkQueue w; - if (ws != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null && w.eventCount >= 0) - return false; - } - } - } - if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) { - for (int pass = 0; pass < 3; ++pass) { - WorkQueue[] ws = workQueues; - if (ws != null) { - WorkQueue w; - int n = ws.length; - for (int i = 0; i < n; ++i) { - if ((w = ws[i]) != null) { - w.runState = -1; - if (pass > 0) { - w.cancelAll(); - if (pass > 1) - w.interruptOwner(); - } - } - } - // Wake up workers parked on event queue - int i, e; long cc; Thread p; - while ((e = (int)(cc = ctl) & E_MASK) != 0 && - (i = e & SMASK) < n && - (w = ws[i]) != null) { - long nc = ((long)(w.nextWait & E_MASK) | - ((cc + AC_UNIT) & AC_MASK) | - (cc & (TC_MASK|STOP_BIT))); - if (w.eventCount == (e | INT_SIGN) && - U.compareAndSwapLong(this, CTL, cc, nc)) { - w.eventCount = (e + E_SEQ) & E_MASK; - w.runState = -1; - if ((p = w.parker) != null) - U.unpark(p); - } - } - } - } - } - } - } - - // Exported methods - - // Constructors - - /** - * Creates a {@code ForkJoinPool} with parallelism equal to {@link - * java.lang.Runtime#availableProcessors}, using the {@linkplain - * #defaultForkJoinWorkerThreadFactory default thread factory}, - * no UncaughtExceptionHandler, and non-async LIFO processing mode. - * - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public ForkJoinPool() { - this(Runtime.getRuntime().availableProcessors(), - defaultForkJoinWorkerThreadFactory, null, false); - } - - /** - * Creates a {@code ForkJoinPool} with the indicated parallelism - * level, the {@linkplain - * #defaultForkJoinWorkerThreadFactory default thread factory}, - * no UncaughtExceptionHandler, and non-async LIFO processing mode. - * - * @param parallelism the parallelism level - * @throws IllegalArgumentException if parallelism less than or - * equal to zero, or greater than implementation limit - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public ForkJoinPool(int parallelism) { - this(parallelism, defaultForkJoinWorkerThreadFactory, null, false); - } - - /** - * Creates a {@code ForkJoinPool} with the given parameters. - * - * @param parallelism the parallelism level. For default value, - * use {@link java.lang.Runtime#availableProcessors}. - * @param factory the factory for creating new threads. For default value, - * use {@link #defaultForkJoinWorkerThreadFactory}. - * @param handler the handler for internal worker threads that - * terminate due to unrecoverable errors encountered while executing - * tasks. For default value, use {@code null}. - * @param asyncMode if true, - * establishes local first-in-first-out scheduling mode for forked - * tasks that are never joined. This mode may be more appropriate - * than default locally stack-based mode in applications in which - * worker threads only process event-style asynchronous tasks. - * For default value, use {@code false}. - * @throws IllegalArgumentException if parallelism less than or - * equal to zero, or greater than implementation limit - * @throws NullPointerException if the factory is null - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public ForkJoinPool(int parallelism, - ForkJoinWorkerThreadFactory factory, - Thread.UncaughtExceptionHandler handler, - boolean asyncMode) { - checkPermission(); - if (factory == null) - throw new NullPointerException(); - if (parallelism <= 0 || parallelism > MAX_CAP) - throw new IllegalArgumentException(); - this.parallelism = parallelism; - this.factory = factory; - this.ueh = handler; - this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE; - long np = (long)(-parallelism); // offset ctl counts - this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); - // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2. - int n = parallelism - 1; - n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; - int size = (n + 1) << 1; // #slots = 2*#workers - this.submitMask = size - 1; // room for max # of submit queues - this.workQueues = new WorkQueue[size]; - this.termination = (this.lock = new Mutex()).newCondition(); - this.stealCount = new AtomicLong(); - this.nextWorkerNumber = new AtomicInteger(); - int pn = poolNumberGenerator.incrementAndGet(); - StringBuilder sb = new StringBuilder("ForkJoinPool-"); - sb.append(Integer.toString(pn)); - sb.append("-worker-"); - this.workerNamePrefix = sb.toString(); - lock.lock(); - this.runState = 1; // set init flag - lock.unlock(); - } - - // Execution methods - - /** - * Performs the given task, returning its result upon completion. - * If the computation encounters an unchecked Exception or Error, - * it is rethrown as the outcome of this invocation. Rethrown - * exceptions behave in the same way as regular exceptions, but, - * when possible, contain stack traces (as displayed for example - * using {@code ex.printStackTrace()}) of both the current thread - * as well as the thread actually encountering the exception; - * minimally only the latter. - * - * @param task the task - * @return the task's result - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public T invoke(ForkJoinTask task) { - if (task == null) - throw new NullPointerException(); - doSubmit(task); - return task.join(); - } - - /** - * Arranges for (asynchronous) execution of the given task. - * - * @param task the task - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public void execute(ForkJoinTask task) { - if (task == null) - throw new NullPointerException(); - doSubmit(task); - } - - // AbstractExecutorService methods - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public void execute(Runnable task) { - if (task == null) - throw new NullPointerException(); - ForkJoinTask job; - if (task instanceof ForkJoinTask) // avoid re-wrap - job = (ForkJoinTask) task; - else - job = new ForkJoinTask.AdaptedRunnableAction(task); - doSubmit(job); - } - - /** - * Submits a ForkJoinTask for execution. - * - * @param task the task to submit - * @return the task - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(ForkJoinTask task) { - if (task == null) - throw new NullPointerException(); - doSubmit(task); - return task; - } - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(Callable task) { - ForkJoinTask job = new ForkJoinTask.AdaptedCallable(task); - doSubmit(job); - return job; - } - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(Runnable task, T result) { - ForkJoinTask job = new ForkJoinTask.AdaptedRunnable(task, result); - doSubmit(job); - return job; - } - - /** - * @throws NullPointerException if the task is null - * @throws RejectedExecutionException if the task cannot be - * scheduled for execution - */ - public ForkJoinTask submit(Runnable task) { - if (task == null) - throw new NullPointerException(); - ForkJoinTask job; - if (task instanceof ForkJoinTask) // avoid re-wrap - job = (ForkJoinTask) task; - else - job = new ForkJoinTask.AdaptedRunnableAction(task); - doSubmit(job); - return job; - } - - /** - * @throws NullPointerException {@inheritDoc} - * @throws RejectedExecutionException {@inheritDoc} - */ - public List> invokeAll(Collection> tasks) { - // In previous versions of this class, this method constructed - // a task to run ForkJoinTask.invokeAll, but now external - // invocation of multiple tasks is at least as efficient. - List> fs = new ArrayList>(tasks.size()); - // Workaround needed because method wasn't declared with - // wildcards in return type but should have been. - @SuppressWarnings({"unchecked", "rawtypes"}) - List> futures = (List>) (List) fs; - - boolean done = false; - try { - for (Callable t : tasks) { - ForkJoinTask f = new ForkJoinTask.AdaptedCallable(t); - doSubmit(f); - fs.add(f); - } - for (ForkJoinTask f : fs) - f.quietlyJoin(); - done = true; - return futures; - } finally { - if (!done) - for (ForkJoinTask f : fs) - f.cancel(false); - } - } - - /** - * Returns the factory used for constructing new workers. - * - * @return the factory used for constructing new workers - */ - public ForkJoinWorkerThreadFactory getFactory() { - return factory; - } - - /** - * Returns the handler for internal worker threads that terminate - * due to unrecoverable errors encountered while executing tasks. - * - * @return the handler, or {@code null} if none - */ - public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() { - return ueh; - } - - /** - * Returns the targeted parallelism level of this pool. - * - * @return the targeted parallelism level of this pool - */ - public int getParallelism() { - return parallelism; - } - - /** - * Returns the number of worker threads that have started but not - * yet terminated. The result returned by this method may differ - * from {@link #getParallelism} when threads are created to - * maintain parallelism when others are cooperatively blocked. - * - * @return the number of worker threads - */ - public int getPoolSize() { - return parallelism + (short)(ctl >>> TC_SHIFT); - } - - /** - * Returns {@code true} if this pool uses local first-in-first-out - * scheduling mode for forked tasks that are never joined. - * - * @return {@code true} if this pool uses async mode - */ - public boolean getAsyncMode() { - return localMode != 0; - } - - /** - * Returns an estimate of the number of worker threads that are - * not blocked waiting to join tasks or for other managed - * synchronization. This method may overestimate the - * number of running threads. - * - * @return the number of worker threads - */ - public int getRunningThreadCount() { - int rc = 0; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null && w.isApparentlyUnblocked()) - ++rc; - } - } - return rc; - } - - /** - * Returns an estimate of the number of threads that are currently - * stealing or executing tasks. This method may overestimate the - * number of active threads. - * - * @return the number of active threads - */ - public int getActiveThreadCount() { - int r = parallelism + (int)(ctl >> AC_SHIFT); - return (r <= 0) ? 0 : r; // suppress momentarily negative values - } - - /** - * Returns {@code true} if all worker threads are currently idle. - * An idle worker is one that cannot obtain a task to execute - * because none are available to steal from other threads, and - * there are no pending submissions to the pool. This method is - * conservative; it might not return {@code true} immediately upon - * idleness of all threads, but will eventually become true if - * threads remain inactive. - * - * @return {@code true} if all threads are currently idle - */ - public boolean isQuiescent() { - return (int)(ctl >> AC_SHIFT) + parallelism == 0; - } - - /** - * Returns an estimate of the total number of tasks stolen from - * one thread's work queue by another. The reported value - * underestimates the actual total number of steals when the pool - * is not quiescent. This value may be useful for monitoring and - * tuning fork/join programs: in general, steal counts should be - * high enough to keep threads busy, but low enough to avoid - * overhead and contention across threads. - * - * @return the number of steals - */ - public long getStealCount() { - long count = stealCount.get(); - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null) - count += w.totalSteals; - } - } - return count; - } - - /** - * Returns an estimate of the total number of tasks currently held - * in queues by worker threads (but not including tasks submitted - * to the pool that have not begun executing). This value is only - * an approximation, obtained by iterating across all threads in - * the pool. This method may be useful for tuning task - * granularities. - * - * @return the number of queued tasks - */ - public long getQueuedTaskCount() { - long count = 0; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 1; i < ws.length; i += 2) { - if ((w = ws[i]) != null) - count += w.queueSize(); - } - } - return count; - } - - /** - * Returns an estimate of the number of tasks submitted to this - * pool that have not yet begun executing. This method may take - * time proportional to the number of submissions. - * - * @return the number of queued submissions - */ - public int getQueuedSubmissionCount() { - int count = 0; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; i += 2) { - if ((w = ws[i]) != null) - count += w.queueSize(); - } - } - return count; - } - - /** - * Returns {@code true} if there are any tasks submitted to this - * pool that have not yet begun executing. - * - * @return {@code true} if there are any queued submissions - */ - public boolean hasQueuedSubmissions() { - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; i += 2) { - if ((w = ws[i]) != null && !w.isEmpty()) - return true; - } - } - return false; - } - - /** - * Removes and returns the next unexecuted submission if one is - * available. This method may be useful in extensions to this - * class that re-assign work in systems with multiple pools. - * - * @return the next submission, or {@code null} if none - */ - protected ForkJoinTask pollSubmission() { - WorkQueue[] ws; WorkQueue w; ForkJoinTask t; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; i += 2) { - if ((w = ws[i]) != null && (t = w.poll()) != null) - return t; - } - } - return null; - } - - /** - * Removes all available unexecuted submitted and forked tasks - * from scheduling queues and adds them to the given collection, - * without altering their execution status. These may include - * artificially generated or wrapped tasks. This method is - * designed to be invoked only when the pool is known to be - * quiescent. Invocations at other times may not remove all - * tasks. A failure encountered while attempting to add elements - * to collection {@code c} may result in elements being in - * neither, either or both collections when the associated - * exception is thrown. The behavior of this operation is - * undefined if the specified collection is modified while the - * operation is in progress. - * - * @param c the collection to transfer elements into - * @return the number of elements transferred - */ - protected int drainTasksTo(Collection> c) { - int count = 0; - WorkQueue[] ws; WorkQueue w; ForkJoinTask t; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; ++i) { - if ((w = ws[i]) != null) { - while ((t = w.poll()) != null) { - c.add(t); - ++count; - } - } - } - } - return count; - } - - /** - * Returns a string identifying this pool, as well as its state, - * including indications of run state, parallelism level, and - * worker and task counts. - * - * @return a string identifying this pool, as well as its state - */ - public String toString() { - // Use a single pass through workQueues to collect counts - long qt = 0L, qs = 0L; int rc = 0; - long st = stealCount.get(); - long c = ctl; - WorkQueue[] ws; WorkQueue w; - if ((ws = workQueues) != null) { - for (int i = 0; i < ws.length; ++i) { - if ((w = ws[i]) != null) { - int size = w.queueSize(); - if ((i & 1) == 0) - qs += size; - else { - qt += size; - st += w.totalSteals; - if (w.isApparentlyUnblocked()) - ++rc; - } - } - } - } - int pc = parallelism; - int tc = pc + (short)(c >>> TC_SHIFT); - int ac = pc + (int)(c >> AC_SHIFT); - if (ac < 0) // ignore transient negative - ac = 0; - String level; - if ((c & STOP_BIT) != 0) - level = (tc == 0) ? "Terminated" : "Terminating"; - else - level = runState < 0 ? "Shutting down" : "Running"; - return super.toString() + - "[" + level + - ", parallelism = " + pc + - ", size = " + tc + - ", active = " + ac + - ", running = " + rc + - ", steals = " + st + - ", tasks = " + qt + - ", submissions = " + qs + - "]"; - } - - /** - * Initiates an orderly shutdown in which previously submitted - * tasks are executed, but no new tasks will be accepted. - * Invocation has no additional effect if already shut down. - * Tasks that are in the process of being submitted concurrently - * during the course of this method may or may not be rejected. - * - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public void shutdown() { - checkPermission(); - tryTerminate(false, true); - } - - /** - * Attempts to cancel and/or stop all tasks, and reject all - * subsequently submitted tasks. Tasks that are in the process of - * being submitted or executed concurrently during the course of - * this method may or may not be rejected. This method cancels - * both existing and unexecuted tasks, in order to permit - * termination in the presence of task dependencies. So the method - * always returns an empty list (unlike the case for some other - * Executors). - * - * @return an empty list - * @throws SecurityException if a security manager exists and - * the caller is not permitted to modify threads - * because it does not hold {@link - * java.lang.RuntimePermission}{@code ("modifyThread")} - */ - public List shutdownNow() { - checkPermission(); - tryTerminate(true, true); - return Collections.emptyList(); - } - - /** - * Returns {@code true} if all tasks have completed following shut down. - * - * @return {@code true} if all tasks have completed following shut down - */ - public boolean isTerminated() { - long c = ctl; - return ((c & STOP_BIT) != 0L && - (short)(c >>> TC_SHIFT) == -parallelism); - } - - /** - * Returns {@code true} if the process of termination has - * commenced but not yet completed. This method may be useful for - * debugging. A return of {@code true} reported a sufficient - * period after shutdown may indicate that submitted tasks have - * ignored or suppressed interruption, or are waiting for IO, - * causing this executor not to properly terminate. (See the - * advisory notes for class {@link ForkJoinTask} stating that - * tasks should not normally entail blocking operations. But if - * they do, they must abort them on interrupt.) - * - * @return {@code true} if terminating but not yet terminated - */ - public boolean isTerminating() { - long c = ctl; - return ((c & STOP_BIT) != 0L && - (short)(c >>> TC_SHIFT) != -parallelism); - } - - /** - * Returns {@code true} if this pool has been shut down. - * - * @return {@code true} if this pool has been shut down - */ - public boolean isShutdown() { - return runState < 0; - } - - /** - * Blocks until all tasks have completed execution after a shutdown - * request, or the timeout occurs, or the current thread is - * interrupted, whichever happens first. - * - * @param timeout the maximum time to wait - * @param unit the time unit of the timeout argument - * @return {@code true} if this executor terminated and - * {@code false} if the timeout elapsed before termination - * @throws InterruptedException if interrupted while waiting - */ - public boolean awaitTermination(long timeout, TimeUnit unit) - throws InterruptedException { - long nanos = unit.toNanos(timeout); - final Mutex lock = this.lock; - lock.lock(); - try { - for (;;) { - if (isTerminated()) - return true; - if (nanos <= 0) - return false; - nanos = termination.awaitNanos(nanos); - } - } finally { - lock.unlock(); - } - } - - /** - * Interface for extending managed parallelism for tasks running - * in {@link ForkJoinPool}s. - * - *

A {@code ManagedBlocker} provides two methods. Method - * {@code isReleasable} must return {@code true} if blocking is - * not necessary. Method {@code block} blocks the current thread - * if necessary (perhaps internally invoking {@code isReleasable} - * before actually blocking). These actions are performed by any - * thread invoking {@link ForkJoinPool#managedBlock}. The - * unusual methods in this API accommodate synchronizers that may, - * but don't usually, block for long periods. Similarly, they - * allow more efficient internal handling of cases in which - * additional workers may be, but usually are not, needed to - * ensure sufficient parallelism. Toward this end, - * implementations of method {@code isReleasable} must be amenable - * to repeated invocation. - * - *

For example, here is a ManagedBlocker based on a - * ReentrantLock: - *

 {@code
-     * class ManagedLocker implements ManagedBlocker {
-     *   final ReentrantLock lock;
-     *   boolean hasLock = false;
-     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
-     *   public boolean block() {
-     *     if (!hasLock)
-     *       lock.lock();
-     *     return true;
-     *   }
-     *   public boolean isReleasable() {
-     *     return hasLock || (hasLock = lock.tryLock());
-     *   }
-     * }}
- * - *

Here is a class that possibly blocks waiting for an - * item on a given queue: - *

 {@code
-     * class QueueTaker implements ManagedBlocker {
-     *   final BlockingQueue queue;
-     *   volatile E item = null;
-     *   QueueTaker(BlockingQueue q) { this.queue = q; }
-     *   public boolean block() throws InterruptedException {
-     *     if (item == null)
-     *       item = queue.take();
-     *     return true;
-     *   }
-     *   public boolean isReleasable() {
-     *     return item != null || (item = queue.poll()) != null;
-     *   }
-     *   public E getItem() { // call after pool.managedBlock completes
-     *     return item;
-     *   }
-     * }}
- */ - public static interface ManagedBlocker { - /** - * Possibly blocks the current thread, for example waiting for - * a lock or condition. - * - * @return {@code true} if no additional blocking is necessary - * (i.e., if isReleasable would return true) - * @throws InterruptedException if interrupted while waiting - * (the method is not required to do so, but is allowed to) - */ - boolean block() throws InterruptedException; - - /** - * Returns {@code true} if blocking is unnecessary. - */ - boolean isReleasable(); - } - - /** - * Blocks in accord with the given blocker. If the current thread - * is a {@link ForkJoinWorkerThread}, this method possibly - * arranges for a spare thread to be activated if necessary to - * ensure sufficient parallelism while the current thread is blocked. - * - *

If the caller is not a {@link ForkJoinTask}, this method is - * behaviorally equivalent to - *

 {@code
-     * while (!blocker.isReleasable())
-     *   if (blocker.block())
-     *     return;
-     * }
- * - * If the caller is a {@code ForkJoinTask}, then the pool may - * first be expanded to ensure parallelism, and later adjusted. - * - * @param blocker the blocker - * @throws InterruptedException if blocker.block did so - */ - public static void managedBlock(ManagedBlocker blocker) - throws InterruptedException { - Thread t = Thread.currentThread(); - ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ? - ((ForkJoinWorkerThread)t).pool : null); - while (!blocker.isReleasable()) { - if (p == null || p.tryCompensate(null, blocker)) { - try { - do {} while (!blocker.isReleasable() && !blocker.block()); - } finally { - if (p != null) - p.incrementActiveCount(); - } - break; - } - } - } - - // AbstractExecutorService overrides. These rely on undocumented - // fact that ForkJoinTask.adapt returns ForkJoinTasks that also - // implement RunnableFuture. - - protected RunnableFuture newTaskFor(Runnable runnable, T value) { - return new ForkJoinTask.AdaptedRunnable(runnable, value); - } - - protected RunnableFuture newTaskFor(Callable callable) { - return new ForkJoinTask.AdaptedCallable(callable); - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long CTL; - private static final long PARKBLOCKER; - private static final int ABASE; - private static final int ASHIFT; - - static { - poolNumberGenerator = new AtomicInteger(); - nextSubmitterSeed = new AtomicInteger(0x55555555); - modifyThreadPermission = new RuntimePermission("modifyThread"); - defaultForkJoinWorkerThreadFactory = - new DefaultForkJoinWorkerThreadFactory(); - submitters = new ThreadSubmitter(); - int s; - try { - U = getUnsafe(); - Class k = ForkJoinPool.class; - Class ak = ForkJoinTask[].class; - CTL = U.objectFieldOffset - (k.getDeclaredField("ctl")); - Class tk = Thread.class; - PARKBLOCKER = U.objectFieldOffset - (tk.getDeclaredField("parkBlocker")); - ABASE = U.arrayBaseOffset(ak); - s = U.arrayIndexScale(ak); - } catch (Exception e) { - throw new Error(e); - } - if ((s & (s-1)) != 0) - throw new Error("data type scale not a power of two"); - ASHIFT = 31 - Integer.numberOfLeadingZeros(s); - } - - /** - * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. - * Replace with a simple call to Unsafe.getUnsafe when integrating - * into a jdk. - * - * @return a sun.misc.Unsafe - */ - private static sun.misc.Unsafe getUnsafe() { - return Unsafe.instance; - } - -} diff --git a/akka-actor/src/main/java/akka/jsr166y/ForkJoinTask.java b/akka-actor/src/main/java/akka/jsr166y/ForkJoinTask.java deleted file mode 100644 index fe12152c3a..0000000000 --- a/akka-actor/src/main/java/akka/jsr166y/ForkJoinTask.java +++ /dev/null @@ -1,1506 +0,0 @@ -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package akka.jsr166y; -import java.io.Serializable; -import java.util.Collection; -import java.util.List; -import java.util.RandomAccess; -import java.lang.ref.WeakReference; -import java.lang.ref.ReferenceQueue; -import java.util.concurrent.Callable; -import java.util.concurrent.CancellationException; -import java.util.concurrent.ExecutionException; -import java.util.concurrent.Future; -import java.util.concurrent.RejectedExecutionException; -import java.util.concurrent.RunnableFuture; -import java.util.concurrent.TimeUnit; -import java.util.concurrent.TimeoutException; -import java.util.concurrent.locks.ReentrantLock; -import java.lang.reflect.Constructor; -import akka.util.Unsafe; - -/** - * Abstract base class for tasks that run within a {@link ForkJoinPool}. - * A {@code ForkJoinTask} is a thread-like entity that is much - * lighter weight than a normal thread. Huge numbers of tasks and - * subtasks may be hosted by a small number of actual threads in a - * ForkJoinPool, at the price of some usage limitations. - * - *

A "main" {@code ForkJoinTask} begins execution when submitted - * to a {@link ForkJoinPool}. Once started, it will usually in turn - * start other subtasks. As indicated by the name of this class, - * many programs using {@code ForkJoinTask} employ only methods - * {@link #fork} and {@link #join}, or derivatives such as {@link - * #invokeAll(ForkJoinTask...) invokeAll}. However, this class also - * provides a number of other methods that can come into play in - * advanced usages, as well as extension mechanics that allow - * support of new forms of fork/join processing. - * - *

A {@code ForkJoinTask} is a lightweight form of {@link Future}. - * The efficiency of {@code ForkJoinTask}s stems from a set of - * restrictions (that are only partially statically enforceable) - * reflecting their main use as computational tasks calculating pure - * functions or operating on purely isolated objects. The primary - * coordination mechanisms are {@link #fork}, that arranges - * asynchronous execution, and {@link #join}, that doesn't proceed - * until the task's result has been computed. Computations should - * ideally avoid {@code synchronized} methods or blocks, and should - * minimize other blocking synchronization apart from joining other - * tasks or using synchronizers such as Phasers that are advertised to - * cooperate with fork/join scheduling. Subdividable tasks should also - * not perform blocking IO, and should ideally access variables that - * are completely independent of those accessed by other running - * tasks. These guidelines are loosely enforced by not permitting - * checked exceptions such as {@code IOExceptions} to be - * thrown. However, computations may still encounter unchecked - * exceptions, that are rethrown to callers attempting to join - * them. These exceptions may additionally include {@link - * RejectedExecutionException} stemming from internal resource - * exhaustion, such as failure to allocate internal task - * queues. Rethrown exceptions behave in the same way as regular - * exceptions, but, when possible, contain stack traces (as displayed - * for example using {@code ex.printStackTrace()}) of both the thread - * that initiated the computation as well as the thread actually - * encountering the exception; minimally only the latter. - * - *

It is possible to define and use ForkJoinTasks that may block, - * but doing do requires three further considerations: (1) Completion - * of few if any other tasks should be dependent on a task - * that blocks on external synchronization or IO. Event-style async - * tasks that are never joined often fall into this category. (2) To - * minimize resource impact, tasks should be small; ideally performing - * only the (possibly) blocking action. (3) Unless the {@link - * ForkJoinPool.ManagedBlocker} API is used, or the number of possibly - * blocked tasks is known to be less than the pool's {@link - * ForkJoinPool#getParallelism} level, the pool cannot guarantee that - * enough threads will be available to ensure progress or good - * performance. - * - *

The primary method for awaiting completion and extracting - * results of a task is {@link #join}, but there are several variants: - * The {@link Future#get} methods support interruptible and/or timed - * waits for completion and report results using {@code Future} - * conventions. Method {@link #invoke} is semantically - * equivalent to {@code fork(); join()} but always attempts to begin - * execution in the current thread. The "quiet" forms of - * these methods do not extract results or report exceptions. These - * may be useful when a set of tasks are being executed, and you need - * to delay processing of results or exceptions until all complete. - * Method {@code invokeAll} (available in multiple versions) - * performs the most common form of parallel invocation: forking a set - * of tasks and joining them all. - * - *

In the most typical usages, a fork-join pair act like a call - * (fork) and return (join) from a parallel recursive function. As is - * the case with other forms of recursive calls, returns (joins) - * should be performed innermost-first. For example, {@code a.fork(); - * b.fork(); b.join(); a.join();} is likely to be substantially more - * efficient than joining {@code a} before {@code b}. - * - *

The execution status of tasks may be queried at several levels - * of detail: {@link #isDone} is true if a task completed in any way - * (including the case where a task was cancelled without executing); - * {@link #isCompletedNormally} is true if a task completed without - * cancellation or encountering an exception; {@link #isCancelled} is - * true if the task was cancelled (in which case {@link #getException} - * returns a {@link java.util.concurrent.CancellationException}); and - * {@link #isCompletedAbnormally} is true if a task was either - * cancelled or encountered an exception, in which case {@link - * #getException} will return either the encountered exception or - * {@link java.util.concurrent.CancellationException}. - * - *

The ForkJoinTask class is not usually directly subclassed. - * Instead, you subclass one of the abstract classes that support a - * particular style of fork/join processing, typically {@link - * RecursiveAction} for computations that do not return results, or - * {@link RecursiveTask} for those that do. Normally, a concrete - * ForkJoinTask subclass declares fields comprising its parameters, - * established in a constructor, and then defines a {@code compute} - * method that somehow uses the control methods supplied by this base - * class. While these methods have {@code public} access (to allow - * instances of different task subclasses to call each other's - * methods), some of them may only be called from within other - * ForkJoinTasks (as may be determined using method {@link - * #inForkJoinPool}). Attempts to invoke them in other contexts - * result in exceptions or errors, possibly including - * {@code ClassCastException}. - * - *

Method {@link #join} and its variants are appropriate for use - * only when completion dependencies are acyclic; that is, the - * parallel computation can be described as a directed acyclic graph - * (DAG). Otherwise, executions may encounter a form of deadlock as - * tasks cyclically wait for each other. However, this framework - * supports other methods and techniques (for example the use of - * {@link Phaser}, {@link #helpQuiesce}, and {@link #complete}) that - * may be of use in constructing custom subclasses for problems that - * are not statically structured as DAGs. To support such usages a - * ForkJoinTask may be atomically marked using {@link - * #markForkJoinTask} and checked for marking using {@link - * #isMarkedForkJoinTask}. The ForkJoinTask implementation does not - * use these {@code protected} methods or marks for any purpose, but - * they may be of use in the construction of specialized subclasses. - * For example, parallel graph traversals can use the supplied methods - * to avoid revisiting nodes/tasks that have already been processed. - * Also, completion based designs can use them to record that one - * subtask has completed. (Method names for marking are bulky in part - * to encourage definition of methods that reflect their usage - * patterns.) - * - *

Most base support methods are {@code final}, to prevent - * overriding of implementations that are intrinsically tied to the - * underlying lightweight task scheduling framework. Developers - * creating new basic styles of fork/join processing should minimally - * implement {@code protected} methods {@link #exec}, {@link - * #setRawResult}, and {@link #getRawResult}, while also introducing - * an abstract computational method that can be implemented in its - * subclasses, possibly relying on other {@code protected} methods - * provided by this class. - * - *

ForkJoinTasks should perform relatively small amounts of - * computation. Large tasks should be split into smaller subtasks, - * usually via recursive decomposition. As a very rough rule of thumb, - * a task should perform more than 100 and less than 10000 basic - * computational steps, and should avoid indefinite looping. If tasks - * are too big, then parallelism cannot improve throughput. If too - * small, then memory and internal task maintenance overhead may - * overwhelm processing. - * - *

This class provides {@code adapt} methods for {@link Runnable} - * and {@link Callable}, that may be of use when mixing execution of - * {@code ForkJoinTasks} with other kinds of tasks. When all tasks are - * of this form, consider using a pool constructed in asyncMode. - * - *

ForkJoinTasks are {@code Serializable}, which enables them to be - * used in extensions such as remote execution frameworks. It is - * sensible to serialize tasks only before or after, but not during, - * execution. Serialization is not relied on during execution itself. - * - * @since 1.7 - * @author Doug Lea - */ -public abstract class ForkJoinTask implements Future, Serializable { - - /* - * See the internal documentation of class ForkJoinPool for a - * general implementation overview. ForkJoinTasks are mainly - * responsible for maintaining their "status" field amidst relays - * to methods in ForkJoinWorkerThread and ForkJoinPool. - * - * The methods of this class are more-or-less layered into - * (1) basic status maintenance - * (2) execution and awaiting completion - * (3) user-level methods that additionally report results. - * This is sometimes hard to see because this file orders exported - * methods in a way that flows well in javadocs. - */ - - /* - * The status field holds run control status bits packed into a - * single int to minimize footprint and to ensure atomicity (via - * CAS). Status is initially zero, and takes on nonnegative - * values until completed, upon which status (anded with - * DONE_MASK) holds value NORMAL, CANCELLED, or EXCEPTIONAL. Tasks - * undergoing blocking waits by other threads have the SIGNAL bit - * set. Completion of a stolen task with SIGNAL set awakens any - * waiters via notifyAll. Even though suboptimal for some - * purposes, we use basic builtin wait/notify to take advantage of - * "monitor inflation" in JVMs that we would otherwise need to - * emulate to avoid adding further per-task bookkeeping overhead. - * We want these monitors to be "fat", i.e., not use biasing or - * thin-lock techniques, so use some odd coding idioms that tend - * to avoid them, mainly by arranging that every synchronized - * block performs a wait, notifyAll or both. - */ - - /** The run status of this task */ - volatile int status; // accessed directly by pool and workers - static final int DONE_MASK = 0xf0000000; // mask out non-completion bits - static final int NORMAL = 0xf0000000; // must be negative - static final int CANCELLED = 0xc0000000; // must be < NORMAL - static final int EXCEPTIONAL = 0x80000000; // must be < CANCELLED - static final int SIGNAL = 0x00000001; - static final int MARKED = 0x00000002; - - /** - * Marks completion and wakes up threads waiting to join this - * task. A specialization for NORMAL completion is in method - * doExec. - * - * @param completion one of NORMAL, CANCELLED, EXCEPTIONAL - * @return completion status on exit - */ - private int setCompletion(int completion) { - for (int s;;) { - if ((s = status) < 0) - return s; - if (U.compareAndSwapInt(this, STATUS, s, s | completion)) { - if ((s & SIGNAL) != 0) - synchronized (this) { notifyAll(); } - return completion; - } - } - } - - /** - * Primary execution method for stolen tasks. Unless done, calls - * exec and records status if completed, but doesn't wait for - * completion otherwise. - * - * @return status on exit from this method - */ - final int doExec() { - int s; boolean completed; - if ((s = status) >= 0) { - try { - completed = exec(); - } catch (Throwable rex) { - return setExceptionalCompletion(rex); - } - while ((s = status) >= 0 && completed) { - if (U.compareAndSwapInt(this, STATUS, s, s | NORMAL)) { - if ((s & SIGNAL) != 0) - synchronized (this) { notifyAll(); } - return NORMAL; - } - } - } - return s; - } - - /** - * Tries to set SIGNAL status. Used by ForkJoinPool. Other - * variants are directly incorporated into externalAwaitDone etc. - * - * @return true if successful - */ - final boolean trySetSignal() { - int s; - return U.compareAndSwapInt(this, STATUS, s = status, s | SIGNAL); - } - - /** - * Blocks a non-worker-thread until completion. - * @return status upon completion - */ - private int externalAwaitDone() { - boolean interrupted = false; - int s; - while ((s = status) >= 0) { - if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) { - try { - wait(); - } catch (InterruptedException ie) { - interrupted = true; - } - } - else - notifyAll(); - } - } - } - if (interrupted) - Thread.currentThread().interrupt(); - return s; - } - - /** - * Blocks a non-worker-thread until completion or interruption. - */ - private int externalInterruptibleAwaitDone() throws InterruptedException { - int s; - if (Thread.interrupted()) - throw new InterruptedException(); - while ((s = status) >= 0) { - if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) - wait(); - else - notifyAll(); - } - } - } - return s; - } - - - /** - * Implementation for join, get, quietlyJoin. Directly handles - * only cases of already-completed, external wait, and - * unfork+exec. Others are relayed to ForkJoinPool.awaitJoin. - * - * @return status upon completion - */ - private int doJoin() { - int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w; - if ((s = status) >= 0) { - if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) { - if (!(w = (wt = (ForkJoinWorkerThread)t).workQueue). - tryUnpush(this) || (s = doExec()) >= 0) - s = wt.pool.awaitJoin(w, this); - } - else - s = externalAwaitDone(); - } - return s; - } - - /** - * Implementation for invoke, quietlyInvoke. - * - * @return status upon completion - */ - private int doInvoke() { - int s; Thread t; ForkJoinWorkerThread wt; - if ((s = doExec()) >= 0) { - if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) - s = (wt = (ForkJoinWorkerThread)t).pool.awaitJoin(wt.workQueue, - this); - else - s = externalAwaitDone(); - } - return s; - } - - // Exception table support - - /** - * Table of exceptions thrown by tasks, to enable reporting by - * callers. Because exceptions are rare, we don't directly keep - * them with task objects, but instead use a weak ref table. Note - * that cancellation exceptions don't appear in the table, but are - * instead recorded as status values. - * - * Note: These statics are initialized below in static block. - */ - private static final ExceptionNode[] exceptionTable; - private static final ReentrantLock exceptionTableLock; - private static final ReferenceQueue exceptionTableRefQueue; - - /** - * Fixed capacity for exceptionTable. - */ - private static final int EXCEPTION_MAP_CAPACITY = 32; - - /** - * Key-value nodes for exception table. The chained hash table - * uses identity comparisons, full locking, and weak references - * for keys. The table has a fixed capacity because it only - * maintains task exceptions long enough for joiners to access - * them, so should never become very large for sustained - * periods. However, since we do not know when the last joiner - * completes, we must use weak references and expunge them. We do - * so on each operation (hence full locking). Also, some thread in - * any ForkJoinPool will call helpExpungeStaleExceptions when its - * pool becomes isQuiescent. - */ - static final class ExceptionNode extends WeakReference> { - final Throwable ex; - ExceptionNode next; - final long thrower; // use id not ref to avoid weak cycles - ExceptionNode(ForkJoinTask task, Throwable ex, ExceptionNode next) { - super(task, exceptionTableRefQueue); - this.ex = ex; - this.next = next; - this.thrower = Thread.currentThread().getId(); - } - } - - /** - * Records exception and sets exceptional completion. - * - * @return status on exit - */ - private int setExceptionalCompletion(Throwable ex) { - int h = System.identityHashCode(this); - final ReentrantLock lock = exceptionTableLock; - lock.lock(); - try { - expungeStaleExceptions(); - ExceptionNode[] t = exceptionTable; - int i = h & (t.length - 1); - for (ExceptionNode e = t[i]; ; e = e.next) { - if (e == null) { - t[i] = new ExceptionNode(this, ex, t[i]); - break; - } - if (e.get() == this) // already present - break; - } - } finally { - lock.unlock(); - } - return setCompletion(EXCEPTIONAL); - } - - /** - * Cancels, ignoring any exceptions thrown by cancel. Used during - * worker and pool shutdown. Cancel is spec'ed not to throw any - * exceptions, but if it does anyway, we have no recourse during - * shutdown, so guard against this case. - */ - static final void cancelIgnoringExceptions(ForkJoinTask t) { - if (t != null && t.status >= 0) { - try { - t.cancel(false); - } catch (Throwable ignore) { - } - } - } - - /** - * Removes exception node and clears status - */ - private void clearExceptionalCompletion() { - int h = System.identityHashCode(this); - final ReentrantLock lock = exceptionTableLock; - lock.lock(); - try { - ExceptionNode[] t = exceptionTable; - int i = h & (t.length - 1); - ExceptionNode e = t[i]; - ExceptionNode pred = null; - while (e != null) { - ExceptionNode next = e.next; - if (e.get() == this) { - if (pred == null) - t[i] = next; - else - pred.next = next; - break; - } - pred = e; - e = next; - } - expungeStaleExceptions(); - status = 0; - } finally { - lock.unlock(); - } - } - - /** - * Returns a rethrowable exception for the given task, if - * available. To provide accurate stack traces, if the exception - * was not thrown by the current thread, we try to create a new - * exception of the same type as the one thrown, but with the - * recorded exception as its cause. If there is no such - * constructor, we instead try to use a no-arg constructor, - * followed by initCause, to the same effect. If none of these - * apply, or any fail due to other exceptions, we return the - * recorded exception, which is still correct, although it may - * contain a misleading stack trace. - * - * @return the exception, or null if none - */ - private Throwable getThrowableException() { - if ((status & DONE_MASK) != EXCEPTIONAL) - return null; - int h = System.identityHashCode(this); - ExceptionNode e; - final ReentrantLock lock = exceptionTableLock; - lock.lock(); - try { - expungeStaleExceptions(); - ExceptionNode[] t = exceptionTable; - e = t[h & (t.length - 1)]; - while (e != null && e.get() != this) - e = e.next; - } finally { - lock.unlock(); - } - Throwable ex; - if (e == null || (ex = e.ex) == null) - return null; - if (e.thrower != Thread.currentThread().getId()) { - Class ec = ex.getClass(); - try { - Constructor noArgCtor = null; - Constructor[] cs = ec.getConstructors();// public ctors only - for (int i = 0; i < cs.length; ++i) { - Constructor c = cs[i]; - Class[] ps = c.getParameterTypes(); - if (ps.length == 0) - noArgCtor = c; - else if (ps.length == 1 && ps[0] == Throwable.class) - return (Throwable)(c.newInstance(ex)); - } - if (noArgCtor != null) { - Throwable wx = (Throwable)(noArgCtor.newInstance()); - wx.initCause(ex); - return wx; - } - } catch (Exception ignore) { - } - } - return ex; - } - - /** - * Poll stale refs and remove them. Call only while holding lock. - */ - private static void expungeStaleExceptions() { - for (Object x; (x = exceptionTableRefQueue.poll()) != null;) { - if (x instanceof ExceptionNode) { - ForkJoinTask key = ((ExceptionNode)x).get(); - ExceptionNode[] t = exceptionTable; - int i = System.identityHashCode(key) & (t.length - 1); - ExceptionNode e = t[i]; - ExceptionNode pred = null; - while (e != null) { - ExceptionNode next = e.next; - if (e == x) { - if (pred == null) - t[i] = next; - else - pred.next = next; - break; - } - pred = e; - e = next; - } - } - } - } - - /** - * If lock is available, poll stale refs and remove them. - * Called from ForkJoinPool when pools become quiescent. - */ - static final void helpExpungeStaleExceptions() { - final ReentrantLock lock = exceptionTableLock; - if (lock.tryLock()) { - try { - expungeStaleExceptions(); - } finally { - lock.unlock(); - } - } - } - - /** - * Throws exception, if any, associated with the given status. - */ - private void reportException(int s) { - Throwable ex = ((s == CANCELLED) ? new CancellationException() : - (s == EXCEPTIONAL) ? getThrowableException() : - null); - if (ex != null) - U.throwException(ex); - } - - // public methods - - /** - * Arranges to asynchronously execute this task. While it is not - * necessarily enforced, it is a usage error to fork a task more - * than once unless it has completed and been reinitialized. - * Subsequent modifications to the state of this task or any data - * it operates on are not necessarily consistently observable by - * any thread other than the one executing it unless preceded by a - * call to {@link #join} or related methods, or a call to {@link - * #isDone} returning {@code true}. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return {@code this}, to simplify usage - */ - public final ForkJoinTask fork() { - ((ForkJoinWorkerThread)Thread.currentThread()).workQueue.push(this); - return this; - } - - /** - * Returns the result of the computation when it {@link #isDone is - * done}. This method differs from {@link #get()} in that - * abnormal completion results in {@code RuntimeException} or - * {@code Error}, not {@code ExecutionException}, and that - * interrupts of the calling thread do not cause the - * method to abruptly return by throwing {@code - * InterruptedException}. - * - * @return the computed result - */ - public final V join() { - int s; - if ((s = doJoin() & DONE_MASK) != NORMAL) - reportException(s); - return getRawResult(); - } - - /** - * Commences performing this task, awaits its completion if - * necessary, and returns its result, or throws an (unchecked) - * {@code RuntimeException} or {@code Error} if the underlying - * computation did so. - * - * @return the computed result - */ - public final V invoke() { - int s; - if ((s = doInvoke() & DONE_MASK) != NORMAL) - reportException(s); - return getRawResult(); - } - - /** - * Forks the given tasks, returning when {@code isDone} holds for - * each task or an (unchecked) exception is encountered, in which - * case the exception is rethrown. If more than one task - * encounters an exception, then this method throws any one of - * these exceptions. If any task encounters an exception, the - * other may be cancelled. However, the execution status of - * individual tasks is not guaranteed upon exceptional return. The - * status of each task may be obtained using {@link - * #getException()} and related methods to check if they have been - * cancelled, completed normally or exceptionally, or left - * unprocessed. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @param t1 the first task - * @param t2 the second task - * @throws NullPointerException if any task is null - */ - public static void invokeAll(ForkJoinTask t1, ForkJoinTask t2) { - int s1, s2; - t2.fork(); - if ((s1 = t1.doInvoke() & DONE_MASK) != NORMAL) - t1.reportException(s1); - if ((s2 = t2.doJoin() & DONE_MASK) != NORMAL) - t2.reportException(s2); - } - - /** - * Forks the given tasks, returning when {@code isDone} holds for - * each task or an (unchecked) exception is encountered, in which - * case the exception is rethrown. If more than one task - * encounters an exception, then this method throws any one of - * these exceptions. If any task encounters an exception, others - * may be cancelled. However, the execution status of individual - * tasks is not guaranteed upon exceptional return. The status of - * each task may be obtained using {@link #getException()} and - * related methods to check if they have been cancelled, completed - * normally or exceptionally, or left unprocessed. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @param tasks the tasks - * @throws NullPointerException if any task is null - */ - public static void invokeAll(ForkJoinTask... tasks) { - Throwable ex = null; - int last = tasks.length - 1; - for (int i = last; i >= 0; --i) { - ForkJoinTask t = tasks[i]; - if (t == null) { - if (ex == null) - ex = new NullPointerException(); - } - else if (i != 0) - t.fork(); - else if (t.doInvoke() < NORMAL && ex == null) - ex = t.getException(); - } - for (int i = 1; i <= last; ++i) { - ForkJoinTask t = tasks[i]; - if (t != null) { - if (ex != null) - t.cancel(false); - else if (t.doJoin() < NORMAL) - ex = t.getException(); - } - } - if (ex != null) - U.throwException(ex); - } - - /** - * Forks all tasks in the specified collection, returning when - * {@code isDone} holds for each task or an (unchecked) exception - * is encountered, in which case the exception is rethrown. If - * more than one task encounters an exception, then this method - * throws any one of these exceptions. If any task encounters an - * exception, others may be cancelled. However, the execution - * status of individual tasks is not guaranteed upon exceptional - * return. The status of each task may be obtained using {@link - * #getException()} and related methods to check if they have been - * cancelled, completed normally or exceptionally, or left - * unprocessed. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @param tasks the collection of tasks - * @return the tasks argument, to simplify usage - * @throws NullPointerException if tasks or any element are null - */ - public static > Collection invokeAll(Collection tasks) { - if (!(tasks instanceof RandomAccess) || !(tasks instanceof List)) { - invokeAll(tasks.toArray(new ForkJoinTask[tasks.size()])); - return tasks; - } - @SuppressWarnings("unchecked") - List> ts = - (List>) tasks; - Throwable ex = null; - int last = ts.size() - 1; - for (int i = last; i >= 0; --i) { - ForkJoinTask t = ts.get(i); - if (t == null) { - if (ex == null) - ex = new NullPointerException(); - } - else if (i != 0) - t.fork(); - else if (t.doInvoke() < NORMAL && ex == null) - ex = t.getException(); - } - for (int i = 1; i <= last; ++i) { - ForkJoinTask t = ts.get(i); - if (t != null) { - if (ex != null) - t.cancel(false); - else if (t.doJoin() < NORMAL) - ex = t.getException(); - } - } - if (ex != null) - U.throwException(ex); - return tasks; - } - - /** - * Attempts to cancel execution of this task. This attempt will - * fail if the task has already completed or could not be - * cancelled for some other reason. If successful, and this task - * has not started when {@code cancel} is called, execution of - * this task is suppressed. After this method returns - * successfully, unless there is an intervening call to {@link - * #reinitialize}, subsequent calls to {@link #isCancelled}, - * {@link #isDone}, and {@code cancel} will return {@code true} - * and calls to {@link #join} and related methods will result in - * {@code CancellationException}. - * - *

This method may be overridden in subclasses, but if so, must - * still ensure that these properties hold. In particular, the - * {@code cancel} method itself must not throw exceptions. - * - *

This method is designed to be invoked by other - * tasks. To terminate the current task, you can just return or - * throw an unchecked exception from its computation method, or - * invoke {@link #completeExceptionally}. - * - * @param mayInterruptIfRunning this value has no effect in the - * default implementation because interrupts are not used to - * control cancellation. - * - * @return {@code true} if this task is now cancelled - */ - public boolean cancel(boolean mayInterruptIfRunning) { - return (setCompletion(CANCELLED) & DONE_MASK) == CANCELLED; - } - - public final boolean isDone() { - return status < 0; - } - - public final boolean isCancelled() { - return (status & DONE_MASK) == CANCELLED; - } - - /** - * Returns {@code true} if this task threw an exception or was cancelled. - * - * @return {@code true} if this task threw an exception or was cancelled - */ - public final boolean isCompletedAbnormally() { - return status < NORMAL; - } - - /** - * Returns {@code true} if this task completed without throwing an - * exception and was not cancelled. - * - * @return {@code true} if this task completed without throwing an - * exception and was not cancelled - */ - public final boolean isCompletedNormally() { - return (status & DONE_MASK) == NORMAL; - } - - /** - * Returns the exception thrown by the base computation, or a - * {@code CancellationException} if cancelled, or {@code null} if - * none or if the method has not yet completed. - * - * @return the exception, or {@code null} if none - */ - public final Throwable getException() { - int s = status & DONE_MASK; - return ((s >= NORMAL) ? null : - (s == CANCELLED) ? new CancellationException() : - getThrowableException()); - } - - /** - * Completes this task abnormally, and if not already aborted or - * cancelled, causes it to throw the given exception upon - * {@code join} and related operations. This method may be used - * to induce exceptions in asynchronous tasks, or to force - * completion of tasks that would not otherwise complete. Its use - * in other situations is discouraged. This method is - * overridable, but overridden versions must invoke {@code super} - * implementation to maintain guarantees. - * - * @param ex the exception to throw. If this exception is not a - * {@code RuntimeException} or {@code Error}, the actual exception - * thrown will be a {@code RuntimeException} with cause {@code ex}. - */ - public void completeExceptionally(Throwable ex) { - setExceptionalCompletion((ex instanceof RuntimeException) || - (ex instanceof Error) ? ex : - new RuntimeException(ex)); - } - - /** - * Completes this task, and if not already aborted or cancelled, - * returning the given value as the result of subsequent - * invocations of {@code join} and related operations. This method - * may be used to provide results for asynchronous tasks, or to - * provide alternative handling for tasks that would not otherwise - * complete normally. Its use in other situations is - * discouraged. This method is overridable, but overridden - * versions must invoke {@code super} implementation to maintain - * guarantees. - * - * @param value the result value for this task - */ - public void complete(V value) { - try { - setRawResult(value); - } catch (Throwable rex) { - setExceptionalCompletion(rex); - return; - } - setCompletion(NORMAL); - } - - /** - * Waits if necessary for the computation to complete, and then - * retrieves its result. - * - * @return the computed result - * @throws CancellationException if the computation was cancelled - * @throws ExecutionException if the computation threw an - * exception - * @throws InterruptedException if the current thread is not a - * member of a ForkJoinPool and was interrupted while waiting - */ - public final V get() throws InterruptedException, ExecutionException { - int s = (Thread.currentThread() instanceof ForkJoinWorkerThread) ? - doJoin() : externalInterruptibleAwaitDone(); - Throwable ex; - if ((s &= DONE_MASK) == CANCELLED) - throw new CancellationException(); - if (s == EXCEPTIONAL && (ex = getThrowableException()) != null) - throw new ExecutionException(ex); - return getRawResult(); - } - - /** - * Waits if necessary for at most the given time for the computation - * to complete, and then retrieves its result, if available. - * - * @param timeout the maximum time to wait - * @param unit the time unit of the timeout argument - * @return the computed result - * @throws CancellationException if the computation was cancelled - * @throws ExecutionException if the computation threw an - * exception - * @throws InterruptedException if the current thread is not a - * member of a ForkJoinPool and was interrupted while waiting - * @throws TimeoutException if the wait timed out - */ - public final V get(long timeout, TimeUnit unit) - throws InterruptedException, ExecutionException, TimeoutException { - if (Thread.interrupted()) - throw new InterruptedException(); - // Messy in part because we measure in nanosecs, but wait in millisecs - int s; long ns, ms; - if ((s = status) >= 0 && (ns = unit.toNanos(timeout)) > 0L) { - long deadline = System.nanoTime() + ns; - ForkJoinPool p = null; - ForkJoinPool.WorkQueue w = null; - Thread t = Thread.currentThread(); - if (t instanceof ForkJoinWorkerThread) { - ForkJoinWorkerThread wt = (ForkJoinWorkerThread)t; - p = wt.pool; - w = wt.workQueue; - s = p.helpJoinOnce(w, this); // no retries on failure - } - boolean canBlock = false; - boolean interrupted = false; - try { - while ((s = status) >= 0) { - if (w != null && w.runState < 0) - cancelIgnoringExceptions(this); - else if (!canBlock) { - if (p == null || p.tryCompensate(this, null)) - canBlock = true; - } - else { - if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) > 0L && - U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) { - synchronized (this) { - if (status >= 0) { - try { - wait(ms); - } catch (InterruptedException ie) { - if (p == null) - interrupted = true; - } - } - else - notifyAll(); - } - } - if ((s = status) < 0 || interrupted || - (ns = deadline - System.nanoTime()) <= 0L) - break; - } - } - } finally { - if (p != null && canBlock) - p.incrementActiveCount(); - } - if (interrupted) - throw new InterruptedException(); - } - if ((s &= DONE_MASK) != NORMAL) { - Throwable ex; - if (s == CANCELLED) - throw new CancellationException(); - if (s != EXCEPTIONAL) - throw new TimeoutException(); - if ((ex = getThrowableException()) != null) - throw new ExecutionException(ex); - } - return getRawResult(); - } - - /** - * Joins this task, without returning its result or throwing its - * exception. This method may be useful when processing - * collections of tasks when some have been cancelled or otherwise - * known to have aborted. - */ - public final void quietlyJoin() { - doJoin(); - } - - /** - * Commences performing this task and awaits its completion if - * necessary, without returning its result or throwing its - * exception. - */ - public final void quietlyInvoke() { - doInvoke(); - } - - /** - * Possibly executes tasks until the pool hosting the current task - * {@link ForkJoinPool#isQuiescent is quiescent}. This method may - * be of use in designs in which many tasks are forked, but none - * are explicitly joined, instead executing them until all are - * processed. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - */ - public static void helpQuiesce() { - ForkJoinWorkerThread wt = - (ForkJoinWorkerThread)Thread.currentThread(); - wt.pool.helpQuiescePool(wt.workQueue); - } - - /** - * Resets the internal bookkeeping state of this task, allowing a - * subsequent {@code fork}. This method allows repeated reuse of - * this task, but only if reuse occurs when this task has either - * never been forked, or has been forked, then completed and all - * outstanding joins of this task have also completed. Effects - * under any other usage conditions are not guaranteed. - * This method may be useful when executing - * pre-constructed trees of subtasks in loops. - * - *

Upon completion of this method, {@code isDone()} reports - * {@code false}, and {@code getException()} reports {@code - * null}. However, the value returned by {@code getRawResult} is - * unaffected. To clear this value, you can invoke {@code - * setRawResult(null)}. - */ - public void reinitialize() { - if ((status & DONE_MASK) == EXCEPTIONAL) - clearExceptionalCompletion(); - else - status = 0; - } - - /** - * Returns the pool hosting the current task execution, or null - * if this task is executing outside of any ForkJoinPool. - * - * @see #inForkJoinPool - * @return the pool, or {@code null} if none - */ - public static ForkJoinPool getPool() { - Thread t = Thread.currentThread(); - return (t instanceof ForkJoinWorkerThread) ? - ((ForkJoinWorkerThread) t).pool : null; - } - - /** - * Returns {@code true} if the current thread is a {@link - * ForkJoinWorkerThread} executing as a ForkJoinPool computation. - * - * @return {@code true} if the current thread is a {@link - * ForkJoinWorkerThread} executing as a ForkJoinPool computation, - * or {@code false} otherwise - */ - public static boolean inForkJoinPool() { - return Thread.currentThread() instanceof ForkJoinWorkerThread; - } - - /** - * Tries to unschedule this task for execution. This method will - * typically succeed if this task is the most recently forked task - * by the current thread, and has not commenced executing in - * another thread. This method may be useful when arranging - * alternative local processing of tasks that could have been, but - * were not, stolen. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return {@code true} if unforked - */ - public boolean tryUnfork() { - return ((ForkJoinWorkerThread)Thread.currentThread()) - .workQueue.tryUnpush(this); - } - - /** - * Returns an estimate of the number of tasks that have been - * forked by the current worker thread but not yet executed. This - * value may be useful for heuristic decisions about whether to - * fork other tasks. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return the number of tasks - */ - public static int getQueuedTaskCount() { - return ((ForkJoinWorkerThread) Thread.currentThread()) - .workQueue.queueSize(); - } - - /** - * Returns an estimate of how many more locally queued tasks are - * held by the current worker thread than there are other worker - * threads that might steal them. This value may be useful for - * heuristic decisions about whether to fork other tasks. In many - * usages of ForkJoinTasks, at steady state, each worker should - * aim to maintain a small constant surplus (for example, 3) of - * tasks, and to process computations locally if this threshold is - * exceeded. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return the surplus number of tasks, which may be negative - */ - public static int getSurplusQueuedTaskCount() { - /* - * The aim of this method is to return a cheap heuristic guide - * for task partitioning when programmers, frameworks, tools, - * or languages have little or no idea about task granularity. - * In essence by offering this method, we ask users only about - * tradeoffs in overhead vs expected throughput and its - * variance, rather than how finely to partition tasks. - * - * In a steady state strict (tree-structured) computation, - * each thread makes available for stealing enough tasks for - * other threads to remain active. Inductively, if all threads - * play by the same rules, each thread should make available - * only a constant number of tasks. - * - * The minimum useful constant is just 1. But using a value of - * 1 would require immediate replenishment upon each steal to - * maintain enough tasks, which is infeasible. Further, - * partitionings/granularities of offered tasks should - * minimize steal rates, which in general means that threads - * nearer the top of computation tree should generate more - * than those nearer the bottom. In perfect steady state, each - * thread is at approximately the same level of computation - * tree. However, producing extra tasks amortizes the - * uncertainty of progress and diffusion assumptions. - * - * So, users will want to use values larger, but not much - * larger than 1 to both smooth over transient shortages and - * hedge against uneven progress; as traded off against the - * cost of extra task overhead. We leave the user to pick a - * threshold value to compare with the results of this call to - * guide decisions, but recommend values such as 3. - * - * When all threads are active, it is on average OK to - * estimate surplus strictly locally. In steady-state, if one - * thread is maintaining say 2 surplus tasks, then so are - * others. So we can just use estimated queue length. - * However, this strategy alone leads to serious mis-estimates - * in some non-steady-state conditions (ramp-up, ramp-down, - * other stalls). We can detect many of these by further - * considering the number of "idle" threads, that are known to - * have zero queued tasks, so compensate by a factor of - * (#idle/#active) threads. - */ - ForkJoinWorkerThread wt = - (ForkJoinWorkerThread)Thread.currentThread(); - return wt.workQueue.queueSize() - wt.pool.idlePerActive(); - } - - // Extension methods - - /** - * Returns the result that would be returned by {@link #join}, even - * if this task completed abnormally, or {@code null} if this task - * is not known to have been completed. This method is designed - * to aid debugging, as well as to support extensions. Its use in - * any other context is discouraged. - * - * @return the result, or {@code null} if not completed - */ - public abstract V getRawResult(); - - /** - * Forces the given value to be returned as a result. This method - * is designed to support extensions, and should not in general be - * called otherwise. - * - * @param value the value - */ - protected abstract void setRawResult(V value); - - /** - * Immediately performs the base action of this task. This method - * is designed to support extensions, and should not in general be - * called otherwise. The return value controls whether this task - * is considered to be done normally. It may return false in - * asynchronous actions that require explicit invocations of - * {@link #complete} to become joinable. It may also throw an - * (unchecked) exception to indicate abnormal exit. - * - * @return {@code true} if completed normally - */ - protected abstract boolean exec(); - - /** - * Returns, but does not unschedule or execute, a task queued by - * the current thread but not yet executed, if one is immediately - * available. There is no guarantee that this task will actually - * be polled or executed next. Conversely, this method may return - * null even if a task exists but cannot be accessed without - * contention with other threads. This method is designed - * primarily to support extensions, and is unlikely to be useful - * otherwise. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return the next task, or {@code null} if none are available - */ - protected static ForkJoinTask peekNextLocalTask() { - return ((ForkJoinWorkerThread) Thread.currentThread()).workQueue.peek(); - } - - /** - * Unschedules and returns, without executing, the next task - * queued by the current thread but not yet executed. This method - * is designed primarily to support extensions, and is unlikely to - * be useful otherwise. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return the next task, or {@code null} if none are available - */ - protected static ForkJoinTask pollNextLocalTask() { - return ((ForkJoinWorkerThread) Thread.currentThread()) - .workQueue.nextLocalTask(); - } - - /** - * Unschedules and returns, without executing, the next task - * queued by the current thread but not yet executed, if one is - * available, or if not available, a task that was forked by some - * other thread, if available. Availability may be transient, so a - * {@code null} result does not necessarily imply quiescence - * of the pool this task is operating in. This method is designed - * primarily to support extensions, and is unlikely to be useful - * otherwise. - * - *

This method may be invoked only from within {@code - * ForkJoinPool} computations (as may be determined using method - * {@link #inForkJoinPool}). Attempts to invoke in other contexts - * result in exceptions or errors, possibly including {@code - * ClassCastException}. - * - * @return a task, or {@code null} if none are available - */ - protected static ForkJoinTask pollTask() { - ForkJoinWorkerThread wt = - (ForkJoinWorkerThread)Thread.currentThread(); - return wt.pool.nextTaskFor(wt.workQueue); - } - - // Mark-bit operations - - /** - * Returns true if this task is marked. - * - * @return true if this task is marked - * @since 1.8 - */ - public final boolean isMarkedForkJoinTask() { - return (status & MARKED) != 0; - } - - /** - * Atomically sets the mark on this task. - * - * @return true if this task was previously unmarked - * @since 1.8 - */ - public final boolean markForkJoinTask() { - for (int s;;) { - if (((s = status) & MARKED) != 0) - return false; - if (U.compareAndSwapInt(this, STATUS, s, s | MARKED)) - return true; - } - } - - /** - * Atomically clears the mark on this task. - * - * @return true if this task was previously marked - * @since 1.8 - */ - public final boolean unmarkForkJoinTask() { - for (int s;;) { - if (((s = status) & MARKED) == 0) - return false; - if (U.compareAndSwapInt(this, STATUS, s, s & ~MARKED)) - return true; - } - } - - /** - * Adaptor for Runnables. This implements RunnableFuture - * to be compliant with AbstractExecutorService constraints - * when used in ForkJoinPool. - */ - static final class AdaptedRunnable extends ForkJoinTask - implements RunnableFuture { - final Runnable runnable; - T result; - AdaptedRunnable(Runnable runnable, T result) { - if (runnable == null) throw new NullPointerException(); - this.runnable = runnable; - this.result = result; // OK to set this even before completion - } - public final T getRawResult() { return result; } - public final void setRawResult(T v) { result = v; } - public final boolean exec() { runnable.run(); return true; } - public final void run() { invoke(); } - private static final long serialVersionUID = 5232453952276885070L; - } - - /** - * Adaptor for Runnables without results - */ - static final class AdaptedRunnableAction extends ForkJoinTask - implements RunnableFuture { - final Runnable runnable; - AdaptedRunnableAction(Runnable runnable) { - if (runnable == null) throw new NullPointerException(); - this.runnable = runnable; - } - public final Void getRawResult() { return null; } - public final void setRawResult(Void v) { } - public final boolean exec() { runnable.run(); return true; } - public final void run() { invoke(); } - private static final long serialVersionUID = 5232453952276885070L; - } - - /** - * Adaptor for Callables - */ - static final class AdaptedCallable extends ForkJoinTask - implements RunnableFuture { - final Callable callable; - T result; - AdaptedCallable(Callable callable) { - if (callable == null) throw new NullPointerException(); - this.callable = callable; - } - public final T getRawResult() { return result; } - public final void setRawResult(T v) { result = v; } - public final boolean exec() { - try { - result = callable.call(); - return true; - } catch (Error err) { - throw err; - } catch (RuntimeException rex) { - throw rex; - } catch (Exception ex) { - throw new RuntimeException(ex); - } - } - public final void run() { invoke(); } - private static final long serialVersionUID = 2838392045355241008L; - } - - /** - * Returns a new {@code ForkJoinTask} that performs the {@code run} - * method of the given {@code Runnable} as its action, and returns - * a null result upon {@link #join}. - * - * @param runnable the runnable action - * @return the task - */ - public static ForkJoinTask adapt(Runnable runnable) { - return new AdaptedRunnableAction(runnable); - } - - /** - * Returns a new {@code ForkJoinTask} that performs the {@code run} - * method of the given {@code Runnable} as its action, and returns - * the given result upon {@link #join}. - * - * @param runnable the runnable action - * @param result the result upon completion - * @return the task - */ - public static ForkJoinTask adapt(Runnable runnable, T result) { - return new AdaptedRunnable(runnable, result); - } - - /** - * Returns a new {@code ForkJoinTask} that performs the {@code call} - * method of the given {@code Callable} as its action, and returns - * its result upon {@link #join}, translating any checked exceptions - * encountered into {@code RuntimeException}. - * - * @param callable the callable action - * @return the task - */ - public static ForkJoinTask adapt(Callable callable) { - return new AdaptedCallable(callable); - } - - // Serialization support - - private static final long serialVersionUID = -7721805057305804111L; - - /** - * Saves this task to a stream (that is, serializes it). - * - * @serialData the current run status and the exception thrown - * during execution, or {@code null} if none - */ - private void writeObject(java.io.ObjectOutputStream s) - throws java.io.IOException { - s.defaultWriteObject(); - s.writeObject(getException()); - } - - /** - * Reconstitutes this task from a stream (that is, deserializes it). - */ - private void readObject(java.io.ObjectInputStream s) - throws java.io.IOException, ClassNotFoundException { - s.defaultReadObject(); - Object ex = s.readObject(); - if (ex != null) - setExceptionalCompletion((Throwable)ex); - } - - // Unsafe mechanics - private static final sun.misc.Unsafe U; - private static final long STATUS; - static { - exceptionTableLock = new ReentrantLock(); - exceptionTableRefQueue = new ReferenceQueue(); - exceptionTable = new ExceptionNode[EXCEPTION_MAP_CAPACITY]; - try { - U = getUnsafe(); - STATUS = U.objectFieldOffset - (ForkJoinTask.class.getDeclaredField("status")); - } catch (Exception e) { - throw new Error(e); - } - } - - /** - * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. - * Replace with a simple call to Unsafe.getUnsafe when integrating - * into a jdk. - * - * @return a sun.misc.Unsafe - */ - private static sun.misc.Unsafe getUnsafe() { - return Unsafe.instance; - } -} diff --git a/akka-actor/src/main/java/akka/jsr166y/ForkJoinWorkerThread.java b/akka-actor/src/main/java/akka/jsr166y/ForkJoinWorkerThread.java deleted file mode 100644 index 4ff31f742d..0000000000 --- a/akka-actor/src/main/java/akka/jsr166y/ForkJoinWorkerThread.java +++ /dev/null @@ -1,119 +0,0 @@ -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package akka.jsr166y; - -/** - * A thread managed by a {@link ForkJoinPool}, which executes - * {@link ForkJoinTask}s. - * This class is subclassable solely for the sake of adding - * functionality -- there are no overridable methods dealing with - * scheduling or execution. However, you can override initialization - * and termination methods surrounding the main task processing loop. - * If you do create such a subclass, you will also need to supply a - * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it - * in a {@code ForkJoinPool}. - * - * @since 1.7 - * @author Doug Lea - */ -public class ForkJoinWorkerThread extends Thread { - /* - * ForkJoinWorkerThreads are managed by ForkJoinPools and perform - * ForkJoinTasks. For explanation, see the internal documentation - * of class ForkJoinPool. - */ - - final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics - final ForkJoinPool pool; // the pool this thread works in - - /** - * Creates a ForkJoinWorkerThread operating in the given pool. - * - * @param pool the pool this thread works in - * @throws NullPointerException if pool is null - */ - protected ForkJoinWorkerThread(ForkJoinPool pool) { - super(pool.nextWorkerName()); - setDaemon(true); - Thread.UncaughtExceptionHandler ueh = pool.ueh; - if (ueh != null) - setUncaughtExceptionHandler(ueh); - this.pool = pool; - pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue - (pool, this, pool.localMode)); - } - - /** - * Returns the pool hosting this thread. - * - * @return the pool - */ - public ForkJoinPool getPool() { - return pool; - } - - /** - * Returns the index number of this thread in its pool. The - * returned value ranges from zero to the maximum number of - * threads (minus one) that have ever been created in the pool. - * This method may be useful for applications that track status or - * collect results per-worker rather than per-task. - * - * @return the index number - */ - public int getPoolIndex() { - return workQueue.poolIndex; - } - - /** - * Initializes internal state after construction but before - * processing any tasks. If you override this method, you must - * invoke {@code super.onStart()} at the beginning of the method. - * Initialization requires care: Most fields must have legal - * default values, to ensure that attempted accesses from other - * threads work correctly even before this thread starts - * processing tasks. - */ - protected void onStart() { - } - - /** - * Performs cleanup associated with termination of this worker - * thread. If you override this method, you must invoke - * {@code super.onTermination} at the end of the overridden method. - * - * @param exception the exception causing this thread to abort due - * to an unrecoverable error, or {@code null} if completed normally - */ - protected void onTermination(Throwable exception) { - } - - /** - * This method is required to be public, but should never be - * called explicitly. It performs the main run loop to execute - * {@link ForkJoinTask}s. - */ - public void run() { - Throwable exception = null; - try { - onStart(); - pool.runWorker(workQueue); - } catch (Throwable ex) { - exception = ex; - } finally { - try { - onTermination(exception); - } catch (Throwable ex) { - if (exception == null) - exception = ex; - } finally { - pool.deregisterWorker(this, exception); - } - } - } -} - diff --git a/akka-actor/src/main/java/akka/jsr166y/RecursiveAction.java b/akka-actor/src/main/java/akka/jsr166y/RecursiveAction.java deleted file mode 100644 index c13c513171..0000000000 --- a/akka-actor/src/main/java/akka/jsr166y/RecursiveAction.java +++ /dev/null @@ -1,164 +0,0 @@ -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package akka.jsr166y; - -/** - * A recursive resultless {@link ForkJoinTask}. This class - * establishes conventions to parameterize resultless actions as - * {@code Void} {@code ForkJoinTask}s. Because {@code null} is the - * only valid value of type {@code Void}, methods such as {@code join} - * always return {@code null} upon completion. - * - *

Sample Usages. Here is a simple but complete ForkJoin - * sort that sorts a given {@code long[]} array: - * - *

 {@code
- * static class SortTask extends RecursiveAction {
- *   final long[] array; final int lo, hi;
- *   SortTask(long[] array, int lo, int hi) {
- *     this.array = array; this.lo = lo; this.hi = hi;
- *   }
- *   SortTask(long[] array) { this(array, 0, array.length); }
- *   protected void compute() {
- *     if (hi - lo < THRESHOLD)
- *       sortSequentially(lo, hi);
- *     else {
- *       int mid = (lo + hi) >>> 1;
- *       invokeAll(new SortTask(array, lo, mid),
- *                 new SortTask(array, mid, hi));
- *       merge(lo, mid, hi);
- *     }
- *   }
- *   // implementation details follow:
- *   final static int THRESHOLD = 1000;
- *   void sortSequentially(int lo, int hi) {
- *     Arrays.sort(array, lo, hi);
- *   }
- *   void merge(int lo, int mid, int hi) {
- *     long[] buf = Arrays.copyOfRange(array, lo, mid);
- *     for (int i = 0, j = lo, k = mid; i < buf.length; j++)
- *       array[j] = (k == hi || buf[i] < array[k]) ?
- *         buf[i++] : array[k++];
- *   }
- * }}
- * - * You could then sort {@code anArray} by creating {@code new - * SortTask(anArray)} and invoking it in a ForkJoinPool. As a more - * concrete simple example, the following task increments each element - * of an array: - *
 {@code
- * class IncrementTask extends RecursiveAction {
- *   final long[] array; final int lo, hi;
- *   IncrementTask(long[] array, int lo, int hi) {
- *     this.array = array; this.lo = lo; this.hi = hi;
- *   }
- *   protected void compute() {
- *     if (hi - lo < THRESHOLD) {
- *       for (int i = lo; i < hi; ++i)
- *         array[i]++;
- *     }
- *     else {
- *       int mid = (lo + hi) >>> 1;
- *       invokeAll(new IncrementTask(array, lo, mid),
- *                 new IncrementTask(array, mid, hi));
- *     }
- *   }
- * }}
- * - *

The following example illustrates some refinements and idioms - * that may lead to better performance: RecursiveActions need not be - * fully recursive, so long as they maintain the basic - * divide-and-conquer approach. Here is a class that sums the squares - * of each element of a double array, by subdividing out only the - * right-hand-sides of repeated divisions by two, and keeping track of - * them with a chain of {@code next} references. It uses a dynamic - * threshold based on method {@code getSurplusQueuedTaskCount}, but - * counterbalances potential excess partitioning by directly - * performing leaf actions on unstolen tasks rather than further - * subdividing. - * - *

 {@code
- * double sumOfSquares(ForkJoinPool pool, double[] array) {
- *   int n = array.length;
- *   Applyer a = new Applyer(array, 0, n, null);
- *   pool.invoke(a);
- *   return a.result;
- * }
- *
- * class Applyer extends RecursiveAction {
- *   final double[] array;
- *   final int lo, hi;
- *   double result;
- *   Applyer next; // keeps track of right-hand-side tasks
- *   Applyer(double[] array, int lo, int hi, Applyer next) {
- *     this.array = array; this.lo = lo; this.hi = hi;
- *     this.next = next;
- *   }
- *
- *   double atLeaf(int l, int h) {
- *     double sum = 0;
- *     for (int i = l; i < h; ++i) // perform leftmost base step
- *       sum += array[i] * array[i];
- *     return sum;
- *   }
- *
- *   protected void compute() {
- *     int l = lo;
- *     int h = hi;
- *     Applyer right = null;
- *     while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
- *        int mid = (l + h) >>> 1;
- *        right = new Applyer(array, mid, h, right);
- *        right.fork();
- *        h = mid;
- *     }
- *     double sum = atLeaf(l, h);
- *     while (right != null) {
- *        if (right.tryUnfork()) // directly calculate if not stolen
- *          sum += right.atLeaf(right.lo, right.hi);
- *       else {
- *          right.join();
- *          sum += right.result;
- *        }
- *        right = right.next;
- *      }
- *     result = sum;
- *   }
- * }}
- * - * @since 1.7 - * @author Doug Lea - */ -public abstract class RecursiveAction extends ForkJoinTask { - private static final long serialVersionUID = 5232453952276485070L; - - /** - * The main computation performed by this task. - */ - protected abstract void compute(); - - /** - * Always returns {@code null}. - * - * @return {@code null} always - */ - public final Void getRawResult() { return null; } - - /** - * Requires null completion value. - */ - protected final void setRawResult(Void mustBeNull) { } - - /** - * Implements execution conventions for RecursiveActions. - */ - protected final boolean exec() { - compute(); - return true; - } - -} diff --git a/akka-actor/src/main/java/akka/jsr166y/RecursiveTask.java b/akka-actor/src/main/java/akka/jsr166y/RecursiveTask.java deleted file mode 100644 index 12378ee6c8..0000000000 --- a/akka-actor/src/main/java/akka/jsr166y/RecursiveTask.java +++ /dev/null @@ -1,68 +0,0 @@ -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package akka.jsr166y; - -/** - * A recursive result-bearing {@link ForkJoinTask}. - * - *

For a classic example, here is a task computing Fibonacci numbers: - * - *

 {@code
- * class Fibonacci extends RecursiveTask {
- *   final int n;
- *   Fibonacci(int n) { this.n = n; }
- *   Integer compute() {
- *     if (n <= 1)
- *        return n;
- *     Fibonacci f1 = new Fibonacci(n - 1);
- *     f1.fork();
- *     Fibonacci f2 = new Fibonacci(n - 2);
- *     return f2.compute() + f1.join();
- *   }
- * }}
- * - * However, besides being a dumb way to compute Fibonacci functions - * (there is a simple fast linear algorithm that you'd use in - * practice), this is likely to perform poorly because the smallest - * subtasks are too small to be worthwhile splitting up. Instead, as - * is the case for nearly all fork/join applications, you'd pick some - * minimum granularity size (for example 10 here) for which you always - * sequentially solve rather than subdividing. - * - * @since 1.7 - * @author Doug Lea - */ -public abstract class RecursiveTask extends ForkJoinTask { - private static final long serialVersionUID = 5232453952276485270L; - - /** - * The result of the computation. - */ - V result; - - /** - * The main computation performed by this task. - */ - protected abstract V compute(); - - public final V getRawResult() { - return result; - } - - protected final void setRawResult(V value) { - result = value; - } - - /** - * Implements execution conventions for RecursiveTask. - */ - protected final boolean exec() { - result = compute(); - return true; - } - -} diff --git a/akka-actor/src/main/java/akka/jsr166y/ThreadLocalRandom.java b/akka-actor/src/main/java/akka/jsr166y/ThreadLocalRandom.java deleted file mode 100644 index d2dbd58120..0000000000 --- a/akka-actor/src/main/java/akka/jsr166y/ThreadLocalRandom.java +++ /dev/null @@ -1,197 +0,0 @@ -/* - * Written by Doug Lea with assistance from members of JCP JSR-166 - * Expert Group and released to the public domain, as explained at - * http://creativecommons.org/publicdomain/zero/1.0/ - */ - -package akka.jsr166y; - -import java.util.Random; - -/** - * A random number generator isolated to the current thread. Like the - * global {@link java.util.Random} generator used by the {@link - * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized - * with an internally generated seed that may not otherwise be - * modified. When applicable, use of {@code ThreadLocalRandom} rather - * than shared {@code Random} objects in concurrent programs will - * typically encounter much less overhead and contention. Use of - * {@code ThreadLocalRandom} is particularly appropriate when multiple - * tasks (for example, each a {@link ForkJoinTask}) use random numbers - * in parallel in thread pools. - * - *

Usages of this class should typically be of the form: - * {@code ThreadLocalRandom.current().nextX(...)} (where - * {@code X} is {@code Int}, {@code Long}, etc). - * When all usages are of this form, it is never possible to - * accidently share a {@code ThreadLocalRandom} across multiple threads. - * - *

This class also provides additional commonly used bounded random - * generation methods. - * - * @since 1.7 - * @author Doug Lea - */ -public class ThreadLocalRandom extends Random { - // same constants as Random, but must be redeclared because private - private static final long multiplier = 0x5DEECE66DL; - private static final long addend = 0xBL; - private static final long mask = (1L << 48) - 1; - - /** - * The random seed. We can't use super.seed. - */ - private long rnd; - - /** - * Initialization flag to permit calls to setSeed to succeed only - * while executing the Random constructor. We can't allow others - * since it would cause setting seed in one part of a program to - * unintentionally impact other usages by the thread. - */ - boolean initialized; - - // Padding to help avoid memory contention among seed updates in - // different TLRs in the common case that they are located near - // each other. - private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7; - - /** - * The actual ThreadLocal - */ - private static final ThreadLocal localRandom = - new ThreadLocal() { - protected ThreadLocalRandom initialValue() { - return new ThreadLocalRandom(); - } - }; - - - /** - * Constructor called only by localRandom.initialValue. - */ - ThreadLocalRandom() { - super(); - initialized = true; - } - - /** - * Returns the current thread's {@code ThreadLocalRandom}. - * - * @return the current thread's {@code ThreadLocalRandom} - */ - public static ThreadLocalRandom current() { - return localRandom.get(); - } - - /** - * Throws {@code UnsupportedOperationException}. Setting seeds in - * this generator is not supported. - * - * @throws UnsupportedOperationException always - */ - public void setSeed(long seed) { - if (initialized) - throw new UnsupportedOperationException(); - rnd = (seed ^ multiplier) & mask; - } - - protected int next(int bits) { - rnd = (rnd * multiplier + addend) & mask; - return (int) (rnd >>> (48-bits)); - } - - /** - * Returns a pseudorandom, uniformly distributed value between the - * given least value (inclusive) and bound (exclusive). - * - * @param least the least value returned - * @param bound the upper bound (exclusive) - * @throws IllegalArgumentException if least greater than or equal - * to bound - * @return the next value - */ - public int nextInt(int least, int bound) { - if (least >= bound) - throw new IllegalArgumentException(); - return nextInt(bound - least) + least; - } - - /** - * Returns a pseudorandom, uniformly distributed value - * between 0 (inclusive) and the specified value (exclusive). - * - * @param n the bound on the random number to be returned. Must be - * positive. - * @return the next value - * @throws IllegalArgumentException if n is not positive - */ - public long nextLong(long n) { - if (n <= 0) - throw new IllegalArgumentException("n must be positive"); - // Divide n by two until small enough for nextInt. On each - // iteration (at most 31 of them but usually much less), - // randomly choose both whether to include high bit in result - // (offset) and whether to continue with the lower vs upper - // half (which makes a difference only if odd). - long offset = 0; - while (n >= Integer.MAX_VALUE) { - int bits = next(2); - long half = n >>> 1; - long nextn = ((bits & 2) == 0) ? half : n - half; - if ((bits & 1) == 0) - offset += n - nextn; - n = nextn; - } - return offset + nextInt((int) n); - } - - /** - * Returns a pseudorandom, uniformly distributed value between the - * given least value (inclusive) and bound (exclusive). - * - * @param least the least value returned - * @param bound the upper bound (exclusive) - * @return the next value - * @throws IllegalArgumentException if least greater than or equal - * to bound - */ - public long nextLong(long least, long bound) { - if (least >= bound) - throw new IllegalArgumentException(); - return nextLong(bound - least) + least; - } - - /** - * Returns a pseudorandom, uniformly distributed {@code double} value - * between 0 (inclusive) and the specified value (exclusive). - * - * @param n the bound on the random number to be returned. Must be - * positive. - * @return the next value - * @throws IllegalArgumentException if n is not positive - */ - public double nextDouble(double n) { - if (n <= 0) - throw new IllegalArgumentException("n must be positive"); - return nextDouble() * n; - } - - /** - * Returns a pseudorandom, uniformly distributed value between the - * given least value (inclusive) and bound (exclusive). - * - * @param least the least value returned - * @param bound the upper bound (exclusive) - * @return the next value - * @throws IllegalArgumentException if least greater than or equal - * to bound - */ - public double nextDouble(double least, double bound) { - if (least >= bound) - throw new IllegalArgumentException(); - return nextDouble() * (bound - least) + least; - } - - private static final long serialVersionUID = -5851777807851030925L; -} diff --git a/akka-actor/src/main/scala/akka/dispatch/AbstractDispatcher.scala b/akka-actor/src/main/scala/akka/dispatch/AbstractDispatcher.scala index 575e69d574..4cf7ae2e65 100644 --- a/akka-actor/src/main/scala/akka/dispatch/AbstractDispatcher.scala +++ b/akka-actor/src/main/scala/akka/dispatch/AbstractDispatcher.scala @@ -13,7 +13,7 @@ import akka.event.EventStream import com.typesafe.config.Config import akka.serialization.SerializationExtension import akka.event.Logging.LogEventException -import akka.jsr166y.{ ForkJoinTask, ForkJoinPool } +import scala.concurrent.forkjoin.{ ForkJoinTask, ForkJoinPool } import akka.util.{ Unsafe, Duration, NonFatal, Index } final case class Envelope private (val message: Any, val sender: ActorRef) diff --git a/akka-actor/src/main/scala/akka/dispatch/ThreadPoolBuilder.scala b/akka-actor/src/main/scala/akka/dispatch/ThreadPoolBuilder.scala index 963299debc..ddee4782b0 100644 --- a/akka-actor/src/main/scala/akka/dispatch/ThreadPoolBuilder.scala +++ b/akka-actor/src/main/scala/akka/dispatch/ThreadPoolBuilder.scala @@ -6,7 +6,7 @@ package akka.dispatch import java.util.Collection import akka.util.Duration -import akka.jsr166y._ +import scala.concurrent.forkjoin._ import java.util.concurrent.atomic.AtomicLong import java.util.concurrent.ArrayBlockingQueue import java.util.concurrent.BlockingQueue diff --git a/akka-actor/src/main/scala/akka/routing/Routing.scala b/akka-actor/src/main/scala/akka/routing/Routing.scala index 6206e5d3a2..642bc11360 100644 --- a/akka-actor/src/main/scala/akka/routing/Routing.scala +++ b/akka-actor/src/main/scala/akka/routing/Routing.scala @@ -15,7 +15,7 @@ import com.typesafe.config.Config import scala.collection.JavaConversions.iterableAsScalaIterable import java.util.concurrent.atomic.{ AtomicLong, AtomicBoolean } import java.util.concurrent.TimeUnit -import akka.jsr166y.ThreadLocalRandom +import scala.concurrent.forkjoin.ThreadLocalRandom import akka.util.Unsafe import akka.dispatch.Dispatchers import scala.annotation.tailrec diff --git a/akka-cluster/src/main/scala/akka/cluster/Cluster.scala b/akka-cluster/src/main/scala/akka/cluster/Cluster.scala index 3eddb5bf60..091f250dec 100644 --- a/akka-cluster/src/main/scala/akka/cluster/Cluster.scala +++ b/akka-cluster/src/main/scala/akka/cluster/Cluster.scala @@ -10,7 +10,7 @@ import akka.ConfigurationException import akka.dispatch.Await import akka.dispatch.MonitorableThreadFactory import akka.event.Logging -import akka.jsr166y.ThreadLocalRandom +import scala.concurrent.forkjoin.ThreadLocalRandom import akka.pattern._ import akka.remote._ import akka.routing._