pekko/akka-remote/src/main/resources/reference.conf
Konrad `ktoso` Malawski dcd8cea32e #21475 moving compressions ownership to Decoder (#22047)
* WIP early preview of moving compressions ownership to Decoder

* Compression table created in transport, but owned by Decoder
Added test for restart of inbound stream

* =art snapshot not needed in HeavyHitters since owned by Decoder
2017-01-13 10:33:55 +01:00

992 lines
44 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#//#shared
#####################################
# Akka Remote Reference Config File #
#####################################
# This is the reference config file that contains all the default settings.
# Make your edits/overrides in your application.conf.
# comments about akka.actor settings left out where they are already in akka-
# actor.jar, because otherwise they would be repeated in config rendering.
#
# For the configuration of the new remoting implementation (Artery) please look
# at the bottom section of this file as it is listed separately.
akka {
actor {
serializers {
akka-containers = "akka.remote.serialization.MessageContainerSerializer"
akka-misc = "akka.remote.serialization.MiscMessageSerializer"
artery = "akka.remote.serialization.ArteryMessageSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
daemon-create = "akka.remote.serialization.DaemonMsgCreateSerializer"
primitive-long = "akka.remote.serialization.LongSerializer"
primitive-int = "akka.remote.serialization.IntSerializer"
primitive-string = "akka.remote.serialization.StringSerializer"
primitive-bytestring = "akka.remote.serialization.ByteStringSerializer"
akka-system-msg = "akka.remote.serialization.SystemMessageSerializer"
}
serialization-bindings {
"akka.actor.ActorSelectionMessage" = akka-containers
"akka.remote.DaemonMsgCreate" = daemon-create
"akka.remote.artery.ArteryMessage" = artery
# Since akka.protobuf.Message does not extend Serializable but
# GeneratedMessage does, need to use the more specific one here in order
# to avoid ambiguity.
"akka.protobuf.GeneratedMessage" = proto
# Since com.google.protobuf.Message does not extend Serializable but
# GeneratedMessage does, need to use the more specific one here in order
# to avoid ambiguity.
# This com.google.protobuf serialization binding is only used if the class can be loaded,
# i.e. com.google.protobuf dependency has been added in the application project.
"com.google.protobuf.GeneratedMessage" = proto
"java.util.Optional" = akka-misc
}
# For the purpose of preserving protocol backward compatibility these bindings are not
# included by default. They can be enabled with enable-additional-serialization-bindings=on.
# They are enabled by default if akka.remote.artery.enabled=on.
additional-serialization-bindings {
"akka.actor.Identify" = akka-misc
"akka.actor.ActorIdentity" = akka-misc
"scala.Some" = akka-misc
"scala.None$" = akka-misc
"akka.actor.Status$Success" = akka-misc
"akka.actor.Status$Failure" = akka-misc
"akka.actor.ActorRef" = akka-misc
"akka.actor.PoisonPill$" = akka-misc
"akka.actor.Kill$" = akka-misc
"akka.remote.RemoteWatcher$Heartbeat$" = akka-misc
"akka.remote.RemoteWatcher$HeartbeatRsp" = akka-misc
"akka.actor.ActorInitializationException" = akka-misc
"akka.dispatch.sysmsg.SystemMessage" = akka-system-msg
"java.lang.String" = primitive-string
"akka.util.ByteString$ByteString1C" = primitive-bytestring
"akka.util.ByteString$ByteString1" = primitive-bytestring
"akka.util.ByteString$ByteStrings" = primitive-bytestring
"java.lang.Long" = primitive-long
"scala.Long" = primitive-long
"java.lang.Integer" = primitive-int
"scala.Int" = primitive-int
# Java Serializer is by default used for exceptions.
# It's recommended that you implement custom serializer for exceptions that are
# sent remotely, e.g. in akka.actor.Status.Failure for ask replies. You can add
# binding to akka-misc (MiscMessageSerializerSpec) for the exceptions that have
# a constructor with single message String or constructor with message String as
# first parameter and cause Throwable as second parameter. Note that it's not
# safe to add this binding for general exceptions such as IllegalArgumentException
# because it may have a subclass without required constructor.
"java.lang.Throwable" = java
"akka.actor.IllegalActorStateException" = akka-misc
"akka.actor.ActorKilledException" = akka-misc
"akka.actor.InvalidActorNameException" = akka-misc
"akka.actor.InvalidMessageException" = akka-misc
}
serialization-identifiers {
"akka.remote.serialization.ProtobufSerializer" = 2
"akka.remote.serialization.DaemonMsgCreateSerializer" = 3
"akka.remote.serialization.MessageContainerSerializer" = 6
"akka.remote.serialization.MiscMessageSerializer" = 16
"akka.remote.serialization.ArteryMessageSerializer" = 17
"akka.remote.serialization.LongSerializer" = 18
"akka.remote.serialization.IntSerializer" = 19
"akka.remote.serialization.StringSerializer" = 20
"akka.remote.serialization.ByteStringSerializer" = 21
"akka.remote.serialization.SystemMessageSerializer" = 22
}
deployment {
default {
# if this is set to a valid remote address, the named actor will be
# deployed at that node e.g. "akka.tcp://sys@host:port"
remote = ""
target {
# A list of hostnames and ports for instantiating the children of a
# router
# The format should be on "akka.tcp://sys@host:port", where:
# - sys is the remote actor system name
# - hostname can be either hostname or IP address the remote actor
# should connect to
# - port should be the port for the remote server on the other node
# The number of actor instances to be spawned is still taken from the
# nr-of-instances setting as for local routers; the instances will be
# distributed round-robin among the given nodes.
nodes = []
}
}
}
}
remote {
### Settings shared by classic remoting and Artery (the new implementation of remoting)
# If set to a nonempty string remoting will use the given dispatcher for
# its internal actors otherwise the default dispatcher is used. Please note
# that since remoting can load arbitrary 3rd party drivers (see
# "enabled-transport" and "adapters" entries) it is not guaranteed that
# every module will respect this setting.
use-dispatcher = "akka.remote.default-remote-dispatcher"
# Settings for the failure detector to monitor connections.
# For TCP it is not important to have fast failure detection, since
# most connection failures are captured by TCP itself.
# The default DeadlineFailureDetector will trigger if there are no heartbeats within
# the duration heartbeat-interval + acceptable-heartbeat-pause, i.e. 20 seconds
# with the default settings.
transport-failure-detector {
# FQCN of the failure detector implementation.
# It must implement akka.remote.FailureDetector and have
# a public constructor with a com.typesafe.config.Config and
# akka.actor.EventStream parameter.
implementation-class = "akka.remote.DeadlineFailureDetector"
# How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 4 s
# Number of potentially lost/delayed heartbeats that will be
# accepted before considering it to be an anomaly.
# A margin to the `heartbeat-interval` is important to be able to survive sudden,
# occasional, pauses in heartbeat arrivals, due to for example garbage collect or
# network drop.
acceptable-heartbeat-pause = 16 s
}
# Settings for the Phi accrual failure detector (http://www.jaist.ac.jp/~defago/files/pdf/IS_RR_2004_010.pdf
# [Hayashibara et al]) used for remote death watch.
# The default PhiAccrualFailureDetector will trigger if there are no heartbeats within
# the duration heartbeat-interval + acceptable-heartbeat-pause + threshold_adjustment,
# i.e. around 12.5 seconds with default settings.
watch-failure-detector {
# FQCN of the failure detector implementation.
# It must implement akka.remote.FailureDetector and have
# a public constructor with a com.typesafe.config.Config and
# akka.actor.EventStream parameter.
implementation-class = "akka.remote.PhiAccrualFailureDetector"
# How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s
# Defines the failure detector threshold.
# A low threshold is prone to generate many wrong suspicions but ensures
# a quick detection in the event of a real crash. Conversely, a high
# threshold generates fewer mistakes but needs more time to detect
# actual crashes.
threshold = 10.0
# Number of the samples of inter-heartbeat arrival times to adaptively
# calculate the failure timeout for connections.
max-sample-size = 200
# Minimum standard deviation to use for the normal distribution in
# AccrualFailureDetector. Too low standard deviation might result in
# too much sensitivity for sudden, but normal, deviations in heartbeat
# inter arrival times.
min-std-deviation = 100 ms
# Number of potentially lost/delayed heartbeats that will be
# accepted before considering it to be an anomaly.
# This margin is important to be able to survive sudden, occasional,
# pauses in heartbeat arrivals, due to for example garbage collect or
# network drop.
acceptable-heartbeat-pause = 10 s
# How often to check for nodes marked as unreachable by the failure
# detector
unreachable-nodes-reaper-interval = 1s
# After the heartbeat request has been sent the first failure detection
# will start after this period, even though no heartbeat mesage has
# been received.
expected-response-after = 1 s
}
# remote deployment configuration section
deployment {
# If true, will only allow specific classes to be instanciated on this system via remote deployment
enable-whitelist = off
whitelist = []
}
#//#shared
}
}
akka {
remote {
#//#classic
### Configuration for classic remoting
# Timeout after which the startup of the remoting subsystem is considered
# to be failed. Increase this value if your transport drivers (see the
# enabled-transports section) need longer time to be loaded.
startup-timeout = 10 s
# Timout after which the graceful shutdown of the remoting subsystem is
# considered to be failed. After the timeout the remoting system is
# forcefully shut down. Increase this value if your transport drivers
# (see the enabled-transports section) need longer time to stop properly.
shutdown-timeout = 10 s
# Before shutting down the drivers, the remoting subsystem attempts to flush
# all pending writes. This setting controls the maximum time the remoting is
# willing to wait before moving on to shut down the drivers.
flush-wait-on-shutdown = 2 s
# Reuse inbound connections for outbound messages
use-passive-connections = on
# Controls the backoff interval after a refused write is reattempted.
# (Transports may refuse writes if their internal buffer is full)
backoff-interval = 5 ms
# Acknowledgment timeout of management commands sent to the transport stack.
command-ack-timeout = 30 s
# The timeout for outbound associations to perform the handshake.
# If the transport is akka.remote.netty.tcp or akka.remote.netty.ssl
# the configured connection-timeout for the transport will be used instead.
handshake-timeout = 15 s
### Security settings
# Enable untrusted mode for full security of server managed actors, prevents
# system messages to be send by clients, e.g. messages like 'Create',
# 'Suspend', 'Resume', 'Terminate', 'Supervise', 'Link' etc.
untrusted-mode = off
# When 'untrusted-mode=on' inbound actor selections are by default discarded.
# Actors with paths defined in this white list are granted permission to receive actor
# selections messages.
# E.g. trusted-selection-paths = ["/user/receptionist", "/user/namingService"]
trusted-selection-paths = []
# Should the remote server require that its peers share the same
# secure-cookie (defined in the 'remote' section)? Secure cookies are passed
# between during the initial handshake. Connections are refused if the initial
# message contains a mismatching cookie or the cookie is missing.
require-cookie = off
# Deprecated since 2.4-M1
secure-cookie = ""
### Logging
# If this is "on", Akka will log all inbound messages at DEBUG level,
# if off then they are not logged
log-received-messages = off
# If this is "on", Akka will log all outbound messages at DEBUG level,
# if off then they are not logged
log-sent-messages = off
# Sets the log granularity level at which Akka logs remoting events. This setting
# can take the values OFF, ERROR, WARNING, INFO, DEBUG, or ON. For compatibility
# reasons the setting "on" will default to "debug" level. Please note that the effective
# logging level is still determined by the global logging level of the actor system:
# for example debug level remoting events will be only logged if the system
# is running with debug level logging.
# Failures to deserialize received messages also fall under this flag.
log-remote-lifecycle-events = on
# Logging of message types with payload size in bytes larger than
# this value. Maximum detected size per message type is logged once,
# with an increase threshold of 10%.
# By default this feature is turned off. Activate it by setting the property to
# a value in bytes, such as 1000b. Note that for all messages larger than this
# limit there will be extra performance and scalability cost.
log-frame-size-exceeding = off
# Log warning if the number of messages in the backoff buffer in the endpoint
# writer exceeds this limit. It can be disabled by setting the value to off.
log-buffer-size-exceeding = 50000
# After failed to establish an outbound connection, the remoting will mark the
# address as failed. This configuration option controls how much time should
# be elapsed before reattempting a new connection. While the address is
# gated, all messages sent to the address are delivered to dead-letters.
# Since this setting limits the rate of reconnects setting it to a
# very short interval (i.e. less than a second) may result in a storm of
# reconnect attempts.
retry-gate-closed-for = 5 s
# After catastrophic communication failures that result in the loss of system
# messages or after the remote DeathWatch triggers the remote system gets
# quarantined to prevent inconsistent behavior.
# This setting controls how long the Quarantine marker will be kept around
# before being removed to avoid long-term memory leaks.
# WARNING: DO NOT change this to a small value to re-enable communication with
# quarantined nodes. Such feature is not supported and any behavior between
# the affected systems after lifting the quarantine is undefined.
prune-quarantine-marker-after = 5 d
# If system messages have been exchanged between two systems (i.e. remote death
# watch or remote deployment has been used) a remote system will be marked as
# quarantined after the two system has no active association, and no
# communication happens during the time configured here.
# The only purpose of this setting is to avoid storing system message redelivery
# data (sequence number state, etc.) for an undefined amount of time leading to long
# term memory leak. Instead, if a system has been gone for this period,
# or more exactly
# - there is no association between the two systems (TCP connection, if TCP transport is used)
# - neither side has been attempting to communicate with the other
# - there are no pending system messages to deliver
# for the amount of time configured here, the remote system will be quarantined and all state
# associated with it will be dropped.
quarantine-after-silence = 5 d
# This setting defines the maximum number of unacknowledged system messages
# allowed for a remote system. If this limit is reached the remote system is
# declared to be dead and its UID marked as tainted.
system-message-buffer-size = 20000
# This setting defines the maximum idle time after an individual
# acknowledgement for system messages is sent. System message delivery
# is guaranteed by explicit acknowledgement messages. These acks are
# piggybacked on ordinary traffic messages. If no traffic is detected
# during the time period configured here, the remoting will send out
# an individual ack.
system-message-ack-piggyback-timeout = 0.3 s
# This setting defines the time after internal management signals
# between actors (used for DeathWatch and supervision) that have not been
# explicitly acknowledged or negatively acknowledged are resent.
# Messages that were negatively acknowledged are always immediately
# resent.
resend-interval = 2 s
# Maximum number of unacknowledged system messages that will be resent
# each 'resend-interval'. If you watch many (> 1000) remote actors you can
# increase this value to for example 600, but a too large limit (e.g. 10000)
# may flood the connection and might cause false failure detection to trigger.
# Test such a configuration by watching all actors at the same time and stop
# all watched actors at the same time.
resend-limit = 200
# WARNING: this setting should not be not changed unless all of its consequences
# are properly understood which assumes experience with remoting internals
# or expert advice.
# This setting defines the time after redelivery attempts of internal management
# signals are stopped to a remote system that has been not confirmed to be alive by
# this system before.
initial-system-message-delivery-timeout = 3 m
### Transports and adapters
# List of the transport drivers that will be loaded by the remoting.
# A list of fully qualified config paths must be provided where
# the given configuration path contains a transport-class key
# pointing to an implementation class of the Transport interface.
# If multiple transports are provided, the address of the first
# one will be used as a default address.
enabled-transports = ["akka.remote.netty.tcp"]
# Transport drivers can be augmented with adapters by adding their
# name to the applied-adapters setting in the configuration of a
# transport. The available adapters should be configured in this
# section by providing a name, and the fully qualified name of
# their corresponding implementation. The class given here
# must implement akka.akka.remote.transport.TransportAdapterProvider
# and have public constructor without parameters.
adapters {
gremlin = "akka.remote.transport.FailureInjectorProvider"
trttl = "akka.remote.transport.ThrottlerProvider"
}
### Default configuration for the Netty based transport drivers
netty.tcp {
# The class given here must implement the akka.remote.transport.Transport
# interface and offer a public constructor which takes two arguments:
# 1) akka.actor.ExtendedActorSystem
# 2) com.typesafe.config.Config
transport-class = "akka.remote.transport.netty.NettyTransport"
# Transport drivers can be augmented with adapters by adding their
# name to the applied-adapters list. The last adapter in the
# list is the adapter immediately above the driver, while
# the first one is the top of the stack below the standard
# Akka protocol
applied-adapters = []
transport-protocol = tcp
# The default remote server port clients should connect to.
# Default is 2552 (AKKA), use 0 if you want a random available port
# This port needs to be unique for each actor system on the same machine.
port = 2552
# The hostname or ip clients should connect to.
# InetAddress.getLocalHost.getHostAddress is used if empty
hostname = ""
# Use this setting to bind a network interface to a different port
# than remoting protocol expects messages at. This may be used
# when running akka nodes in a separated networks (under NATs or docker containers).
# Use 0 if you want a random available port. Examples:
#
# akka.remote.netty.tcp.port = 2552
# akka.remote.netty.tcp.bind-port = 2553
# Network interface will be bound to the 2553 port, but remoting protocol will
# expect messages sent to port 2552.
#
# akka.remote.netty.tcp.port = 0
# akka.remote.netty.tcp.bind-port = 0
# Network interface will be bound to a random port, and remoting protocol will
# expect messages sent to the bound port.
#
# akka.remote.netty.tcp.port = 2552
# akka.remote.netty.tcp.bind-port = 0
# Network interface will be bound to a random port, but remoting protocol will
# expect messages sent to port 2552.
#
# akka.remote.netty.tcp.port = 0
# akka.remote.netty.tcp.bind-port = 2553
# Network interface will be bound to the 2553 port, and remoting protocol will
# expect messages sent to the bound port.
#
# akka.remote.netty.tcp.port = 2552
# akka.remote.netty.tcp.bind-port = ""
# Network interface will be bound to the 2552 port, and remoting protocol will
# expect messages sent to the bound port.
#
# akka.remote.netty.tcp.port if empty
bind-port = ""
# Use this setting to bind a network interface to a different hostname or ip
# than remoting protocol expects messages at.
# Use "0.0.0.0" to bind to all interfaces.
# akka.remote.netty.tcp.hostname if empty
bind-hostname = ""
# Enables SSL support on this transport
enable-ssl = false
# Sets the connectTimeoutMillis of all outbound connections,
# i.e. how long a connect may take until it is timed out
connection-timeout = 15 s
# If set to "<id.of.dispatcher>" then the specified dispatcher
# will be used to accept inbound connections, and perform IO. If "" then
# dedicated threads will be used.
# Please note that the Netty driver only uses this configuration and does
# not read the "akka.remote.use-dispatcher" entry. Instead it has to be
# configured manually to point to the same dispatcher if needed.
use-dispatcher-for-io = ""
# Sets the high water mark for the in and outbound sockets,
# set to 0b for platform default
write-buffer-high-water-mark = 0b
# Sets the low water mark for the in and outbound sockets,
# set to 0b for platform default
write-buffer-low-water-mark = 0b
# Sets the send buffer size of the Sockets,
# set to 0b for platform default
send-buffer-size = 256000b
# Sets the receive buffer size of the Sockets,
# set to 0b for platform default
receive-buffer-size = 256000b
# Maximum message size the transport will accept, but at least
# 32000 bytes.
# Please note that UDP does not support arbitrary large datagrams,
# so this setting has to be chosen carefully when using UDP.
# Both send-buffer-size and receive-buffer-size settings has to
# be adjusted to be able to buffer messages of maximum size.
maximum-frame-size = 128000b
# Sets the size of the connection backlog
backlog = 4096
# Enables the TCP_NODELAY flag, i.e. disables Nagles algorithm
tcp-nodelay = on
# Enables TCP Keepalive, subject to the O/S kernels configuration
tcp-keepalive = on
# Enables SO_REUSEADDR, which determines when an ActorSystem can open
# the specified listen port (the meaning differs between *nix and Windows)
# Valid values are "on", "off" and "off-for-windows"
# due to the following Windows bug: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4476378
# "off-for-windows" of course means that it's "on" for all other platforms
tcp-reuse-addr = off-for-windows
# Used to configure the number of I/O worker threads on server sockets
server-socket-worker-pool {
# Min number of threads to cap factor-based number to
pool-size-min = 2
# The pool size factor is used to determine thread pool size
# using the following formula: ceil(available processors * factor).
# Resulting size is then bounded by the pool-size-min and
# pool-size-max values.
pool-size-factor = 1.0
# Max number of threads to cap factor-based number to
pool-size-max = 2
}
# Used to configure the number of I/O worker threads on client sockets
client-socket-worker-pool {
# Min number of threads to cap factor-based number to
pool-size-min = 2
# The pool size factor is used to determine thread pool size
# using the following formula: ceil(available processors * factor).
# Resulting size is then bounded by the pool-size-min and
# pool-size-max values.
pool-size-factor = 1.0
# Max number of threads to cap factor-based number to
pool-size-max = 2
}
}
# DEPRECATED, since 2.5.0
# The netty.udp transport is deprecated, please use Artery instead.
# See: http://doc.akka.io/docs/akka/2.4/scala/remoting-artery.html
netty.udp = ${akka.remote.netty.tcp}
netty.udp {
transport-protocol = udp
}
netty.ssl = ${akka.remote.netty.tcp}
netty.ssl = {
# Enable SSL/TLS encryption.
# This must be enabled on both the client and server to work.
enable-ssl = true
security {
# This is the Java Key Store used by the server connection
key-store = "keystore"
# This password is used for decrypting the key store
key-store-password = "changeme"
# This password is used for decrypting the key
key-password = "changeme"
# This is the Java Key Store used by the client connection
trust-store = "truststore"
# This password is used for decrypting the trust store
trust-store-password = "changeme"
# Protocol to use for SSL encryption, choose from:
# TLS 1.2 is available since JDK7, and default since JDK8:
# https://blogs.oracle.com/java-platform-group/entry/java_8_will_use_tls
protocol = "TLSv1.2"
# Example: ["TLS_RSA_WITH_AES_128_CBC_SHA", "TLS_RSA_WITH_AES_256_CBC_SHA"]
# You need to install the JCE Unlimited Strength Jurisdiction Policy
# Files to use AES 256.
# More info here:
# http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
enabled-algorithms = ["TLS_RSA_WITH_AES_128_CBC_SHA"]
# There are three options, in increasing order of security:
# "" or SecureRandom => (default)
# "SHA1PRNG" => Can be slow because of blocking issues on Linux
# "AES128CounterSecureRNG" => fastest startup and based on AES encryption
# algorithm
# "AES256CounterSecureRNG" (Install JCE Unlimited Strength Jurisdiction
# Policy Files first)
#
# Setting a value here may require you to supply the appropriate cipher
# suite (see enabled-algorithms section above)
random-number-generator = ""
# Require mutual authentication between TLS peers
#
# Without mutual authentication only the peer that actively establishes a connection (TLS client side)
# checks if the passive side (TLS server side) sends over a trusted certificate. With the flag turned on,
# the passive side will also request and verify a certificate from the connecting peer.
#
# To prevent man-in-the-middle attacks this setting is enabled by default.
#
# Note: Nodes that are configured with this setting to 'on' might not be able to receive messages from nodes that
# run on older versions of akka-remote. This is because in versions of Akka < 2.4.12 the active side of the remoting
# connection will not send over certificates even if asked.
#
# However, starting with Akka 2.4.12, even with this setting "off", the active side (TLS client side)
# will use the given key-store to send over a certificate if asked. A rolling upgrade from versions of
# Akka < 2.4.12 can therefore work like this:
# - upgrade all nodes to an Akka version >= 2.4.12, in the best case the latest version, but keep this setting at "off"
# - then switch this flag to "on" and do again a rolling upgrade of all nodes
# The first step ensures that all nodes will send over a certificate when asked to. The second
# step will ensure that all nodes finally enforce the secure checking of client certificates.
require-mutual-authentication = on
}
}
### Default configuration for the failure injector transport adapter
gremlin {
# Enable debug logging of the failure injector transport adapter
debug = off
}
### Default dispatcher for the remoting subsystem
default-remote-dispatcher {
type = Dispatcher
executor = "fork-join-executor"
fork-join-executor {
parallelism-min = 2
parallelism-factor = 0.5
parallelism-max = 16
}
throughput = 10
}
backoff-remote-dispatcher {
type = Dispatcher
executor = "fork-join-executor"
fork-join-executor {
# Min number of threads to cap factor-based parallelism number to
parallelism-min = 2
parallelism-max = 2
}
}
}
}
#//#classic
akka {
remote {
#//#artery
### Configuration for Artery, the reimplementation of remoting
artery {
# Enable the new remoting with this flag
enabled = off
# Canonical address is the address other clients should connect to.
# Artery transport will expect messages to this address.
canonical {
# The default remote server port clients should connect to.
# Default is 25520, use 0 if you want a random available port
# This port needs to be unique for each actor system on the same machine.
port = 25520
# Hostname clients should connect to. Can be set to an ip, hostname
# or one of the following special values:
# "<getHostAddress>" InetAddress.getLocalHost.getHostAddress
# "<getHostName>" InetAddress.getLocalHost.getHostName
#
hostname = "<getHostAddress>"
}
# Use these settings to bind a network interface to a different address
# than artery expects messages at. This may be used when running Akka
# nodes in a separated networks (under NATs or in containers). If canonical
# and bind addresses are different, then network configuration that relays
# communications from canonical to bind addresses is expected.
bind {
# Port to bind a network interface to. Can be set to a port number
# of one of the following special values:
# 0 random available port
# "" akka.remote.artery.canonical.port
#
port = ""
# Hostname to bind a network interface to. Can be set to an ip, hostname
# or one of the following special values:
# "0.0.0.0" all interfaces
# "" akka.remote.artery.canonical.hostname
# "<getHostAddress>" InetAddress.getLocalHost.getHostAddress
# "<getHostName>" InetAddress.getLocalHost.getHostName
#
hostname = ""
}
# Actor paths to use the large message stream for when a message
# is sent to them over remoting. The large message stream dedicated
# is separate from "normal" and system messages so that sending a
# large message does not interfere with them.
# Entries should be the full path to the actor. Wildcards in the form of "*"
# can be supplied at any place and matches any name at that segment -
# "/user/supervisor/actor/*" will match any direct child to actor,
# while "/supervisor/*/child" will match any grandchild to "supervisor" that
# has the name "child"
# Messages sent to ActorSelections will not be passed through the large message
# stream, to pass such messages through the large message stream the selections
# but must be resolved to ActorRefs first.
large-message-destinations = []
# Enable untrusted mode, which discards inbound system messages, PossiblyHarmful and
# ActorSelection messages. E.g. remote watch and remote deployment will not work.
# ActorSelection messages can be enabled for specific paths with the trusted-selection-paths
untrusted-mode = off
# When 'untrusted-mode=on' inbound actor selections are by default discarded.
# Actors with paths defined in this white list are granted permission to receive actor
# selections messages.
# E.g. trusted-selection-paths = ["/user/receptionist", "/user/namingService"]
trusted-selection-paths = []
# If this is "on", all inbound remote messages will be logged at DEBUG level,
# if off then they are not logged
log-received-messages = off
# If this is "on", all outbound remote messages will be logged at DEBUG level,
# if off then they are not logged
log-sent-messages = off
advanced {
# Maximum serialized message size, including header data.
maximum-frame-size = 256 KiB
# Direct byte buffers are reused in a pool with this maximum size.
# Each buffer has the size of 'maximum-frame-size'.
# This is not a hard upper limit on number of created buffers. Additional
# buffers will be created if needed, e.g. when using many outbound
# associations at the same time. Such additional buffers will be garbage
# collected, which is not as efficient as reusing buffers in the pool.
buffer-pool-size = 128
# Maximum serialized message size for the large messages, including header data.
# See 'large-message-destinations'.
maximum-large-frame-size = 2 MiB
# Direct byte buffers for the large messages are reused in a pool with this maximum size.
# Each buffer has the size of 'maximum-large-frame-size'.
# See 'large-message-destinations'.
# This is not a hard upper limit on number of created buffers. Additional
# buffers will be created if needed, e.g. when using many outbound
# associations at the same time. Such additional buffers will be garbage
# collected, which is not as efficient as reusing buffers in the pool.
large-buffer-pool-size = 32
# For enabling testing features, such as blackhole in akka-remote-testkit.
test-mode = off
# Settings for the materializer that is used for the remote streams.
materializer = ${akka.stream.materializer}
# If set to a nonempty string artery will use the given dispatcher for
# the ordinary and large message streams, otherwise the default dispatcher is used.
use-dispatcher = "akka.remote.default-remote-dispatcher"
# If set to a nonempty string remoting will use the given dispatcher for
# the control stream, otherwise the default dispatcher is used.
# It can be good to not use the same dispatcher for the control stream as
# the dispatcher for the ordinary message stream so that heartbeat messages
# are not disturbed.
use-control-stream-dispatcher = ""
# Controls whether to start the Aeron media driver in the same JVM or use external
# process. Set to 'off' when using external media driver, and then also set the
# 'aeron-dir'.
embedded-media-driver = on
# Directory used by the Aeron media driver. It's mandatory to define the 'aeron-dir'
# if using external media driver, i.e. when 'embedded-media-driver = off'.
# Embedded media driver will use a this directory, or a temporary directory if this
# property is not defined (empty).
aeron-dir = ""
# Whether to delete aeron embeded driver directory upon driver stop.
delete-aeron-dir = yes
# Level of CPU time used, on a scale between 1 and 10, during backoff/idle.
# The tradeoff is that to have low latency more CPU time must be used to be
# able to react quickly on incoming messages or send as fast as possible after
# backoff backpressure.
# Level 1 strongly prefer low CPU consumption over low latency.
# Level 10 strongly prefer low latency over low CPU consumption.
idle-cpu-level = 5
# WARNING: This feature is not supported yet. Don't use other value than 1.
# It requires more hardening and performance optimizations.
# Number of outbound lanes for each outbound association. A value greater than 1
# means that serialization can be performed in parallel for different destination
# actors. The selection of lane is based on consistent hashing of the recipient
# ActorRef to preserve message ordering per receiver.
outbound-lanes = 1
# WARNING: This feature is not supported yet. Don't use other value than 1.
# It requires more hardening and performance optimizations.
# Total number of inbound lanes, shared among all inbound associations. A value
# greater than 1 means that deserialization can be performed in parallel for
# different destination actors. The selection of lane is based on consistent
# hashing of the recipient ActorRef to preserve message ordering per receiver.
inbound-lanes = 1
# Size of the send queue for outgoing messages. Messages will be dropped if
# the queue becomes full. This may happen if you send a burst of many messages
# without end-to-end flow control. Note that there is one such queue per
# outbound association. The trade-off of using a larger queue size is that
# it consumes more memory, since the queue is based on preallocated array with
# fixed size.
outbound-message-queue-size = 3072
# Size of the send queue for outgoing control messages, such as system messages.
# If this limit is reached the remote system is declared to be dead and its UID
# marked as quarantined.
# The trade-off of using a larger queue size is that it consumes more memory,
# since the queue is based on preallocated array with fixed size.
outbound-control-queue-size = 3072
# Size of the send queue for outgoing large messages. Messages will be dropped if
# the queue becomes full. This may happen if you send a burst of many messages
# without end-to-end flow control. Note that there is one such queue per
# outbound association. The trade-off of using a larger queue size is that
# it consumes more memory, since the queue is based on preallocated array with
# fixed size.
outbound-large-message-queue-size = 256
# This setting defines the maximum number of unacknowledged system messages
# allowed for a remote system. If this limit is reached the remote system is
# declared to be dead and its UID marked as quarantined.
system-message-buffer-size = 20000
# unacknowledged system messages are re-delivered with this interval
system-message-resend-interval = 1 second
# The timeout for outbound associations to perform the handshake.
# This timeout must be greater than the 'image-liveness-timeout'.
handshake-timeout = 20 s
# incomplete handshake attempt is retried with this interval
handshake-retry-interval = 1 second
# handshake requests are performed periodically with this interval,
# also after the handshake has been completed to be able to establish
# a new session with a restarted destination system
inject-handshake-interval = 1 second
# messages that are not accepted by Aeron are dropped after retrying for this period
give-up-message-after = 60 seconds
# System messages that are not acknowledged after re-sending for this period are
# dropped and will trigger quarantine. The value should be longer than the length
# of a network partition that you need to survive.
give-up-system-message-after = 6 hours
# during ActorSystem termination the remoting will wait this long for
# an acknowledgment by the destination system that flushing of outstanding
# remote messages has been completed
shutdown-flush-timeout = 1 second
# See 'inbound-max-restarts'
inbound-restart-timeout = 5 seconds
# Max number of restarts within 'inbound-restart-timeout' for the inbound streams.
# If more restarts occurs the ActorSystem will be terminated.
inbound-max-restarts = 5
# See 'outbound-max-restarts'
outbound-restart-timeout = 5 seconds
# Max number of restarts within 'outbound-restart-timeout' for the outbound streams.
# If more restarts occurs the ActorSystem will be terminated.
outbound-max-restarts = 5
# Stop outbound stream of a quarantined association after this idle timeout, i.e.
# when not used any more.
stop-quarantined-after-idle = 3 seconds
# Timeout after which aeron driver has not had keepalive messages
# from a client before it considers the client dead.
client-liveness-timeout = 20 seconds
# Timeout for each the INACTIVE and LINGER stages an aeron image
# will be retained for when it is no longer referenced.
# This timeout must be less than the 'handshake-timeout'.
image-liveness-timeout = 10 seconds
# Timeout after which the aeron driver is considered dead
# if it does not update its C'n'C timestamp.
driver-timeout = 20 seconds
flight-recorder {
// FIXME it should be enabled by default when we have a good solution for naming the files
enabled = off
# Controls where the flight recorder file will be written. There are three options:
# 1. Empty: a file will be generated in the temporary directory of the OS
# 2. A relative or absolute path ending with ".afr": this file will be used
# 3. A relative or absolute path: this directory will be used, the file will get a random file name
destination = ""
}
# compression of common strings in remoting messages, like actor destinations, serializers etc
compression {
actor-refs {
# Max number of compressed actor-refs
# Note that compression tables are "rolling" (i.e. a new table replaces the old
# compression table once in a while), and this setting is only about the total number
# of compressions within a single such table.
# Must be a positive natural number.
max = 256
# interval between new table compression advertisements.
# this means the time during which we collect heavy-hitter data and then turn it into a compression table.
advertisement-interval = 1 minute
}
manifests {
# Max number of compressed manifests
# Note that compression tables are "rolling" (i.e. a new table replaces the old
# compression table once in a while), and this setting is only about the total number
# of compressions within a single such table.
# Must be a positive natural number.
max = 256
# interval between new table compression advertisements.
# this means the time during which we collect heavy-hitter data and then turn it into a compression table.
advertisement-interval = 1 minute
}
}
# List of fully qualified class names of remote instruments which should
# be initialized and used for monitoring of remote messages.
# The class must extend akka.remote.artery.RemoteInstrument and
# have a public constructor with empty parameters or one ExtendedActorSystem
# parameter.
# A new instance of RemoteInstrument will be created for each encoder and decoder.
# It's only called from the stage, so if it dosn't delegate to any shared instance
# it doesn't have to be thread-safe.
# Refer to `akka.remote.artery.RemoteInstrument` for more information.
instruments = ${?akka.remote.artery.advanced.instruments} []
}
}
}
}
#//#artery