pekko/akka-actor/src/main/scala/akka/pattern/AskSupport.scala

201 lines
8 KiB
Scala
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* Copyright (C) 2009-2012 Typesafe Inc. <http://www.typesafe.com>
*/
package akka.pattern
import java.util.concurrent.atomic.AtomicBoolean
import java.util.concurrent.TimeoutException
import akka.actor.{ Terminated, Status, MinimalActorRef, InternalActorRef, ActorRef, ActorPath }
import akka.dispatch.{ Promise, Terminate, SystemMessage, Future }
import akka.event.DeathWatch
import akka.actor.ActorRefProvider
import akka.util.Timeout
/**
* This is what is used to complete a Future that is returned from an ask/? call,
* when it times out.
*/
class AskTimeoutException(message: String, cause: Throwable) extends TimeoutException {
def this(message: String) = this(message, null: Throwable)
}
/**
* This object contains implementation details of the “ask” pattern.
*/
trait AskSupport {
/**
* Import this implicit conversion to gain `?` and `ask` methods on
* [[akka.actor.ActorRef]], which will defer to the
* `ask(actorRef, message)(timeout)` method defined here.
*
* {{{
* import akka.pattern.ask
*
* val future = actor ? message // => ask(actor, message)
* val future = actor ask message // => ask(actor, message)
* val future = actor.ask(message)(timeout) // => ask(actor, message)(timeout)
* }}}
*
* All of the above use an implicit [[akka.actor.Timeout]].
*/
implicit def ask(actorRef: ActorRef): AskableActorRef = new AskableActorRef(actorRef)
/**
* Sends a message asynchronously and returns a [[akka.dispatch.Future]]
* holding the eventual reply message; this means that the target actor
* needs to send the result to the `sender` reference provided. The Future
* will be completed with an [[akka.actor.AskTimeoutException]] after the
* given timeout has expired; this is independent from any timeout applied
* while awaiting a result for this future (i.e. in
* `Await.result(..., timeout)`).
*
* <b>Warning:</b>
* When using future callbacks, inside actors you need to carefully avoid closing over
* the containing actors object, i.e. do not call methods or access mutable state
* on the enclosing actor from within the callback. This would break the actor
* encapsulation and may introduce synchronization bugs and race conditions because
* the callback will be scheduled concurrently to the enclosing actor. Unfortunately
* there is not yet a way to detect these illegal accesses at compile time.
*
* <b>Recommended usage:</b>
*
* {{{
* val f = ask(worker, request)(timeout)
* flow {
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see [[akka.dispatch.Future]] for a description of `flow`]
*/
def ask(actorRef: ActorRef, message: Any)(implicit timeout: Timeout): Future[Any] = actorRef match {
case ref: InternalActorRef if ref.isTerminated
actorRef.tell(message)
Promise.failed(new AskTimeoutException("sending to terminated ref breaks promises"))(ref.provider.dispatcher)
case ref: InternalActorRef
val provider = ref.provider
if (timeout.duration.length <= 0) {
actorRef.tell(message)
Promise.failed(new AskTimeoutException("not asking with negative timeout"))(provider.dispatcher)
} else {
val a = createAsker(provider, timeout)
actorRef.tell(message, a)
a.result
}
case _ throw new IllegalArgumentException("incompatible ActorRef " + actorRef)
}
/**
* Implementation detail of the “ask” pattern enrichment of ActorRef
*/
private[akka] final class AskableActorRef(val actorRef: ActorRef) {
/**
* Sends a message asynchronously and returns a [[akka.dispatch.Future]]
* holding the eventual reply message; this means that the target actor
* needs to send the result to the `sender` reference provided. The Future
* will be completed with an [[akka.actor.AskTimeoutException]] after the
* given timeout has expired; this is independent from any timeout applied
* while awaiting a result for this future (i.e. in
* `Await.result(..., timeout)`).
*
* <b>Warning:</b>
* When using future callbacks, inside actors you need to carefully avoid closing over
* the containing actors object, i.e. do not call methods or access mutable state
* on the enclosing actor from within the callback. This would break the actor
* encapsulation and may introduce synchronization bugs and race conditions because
* the callback will be scheduled concurrently to the enclosing actor. Unfortunately
* there is not yet a way to detect these illegal accesses at compile time.
*
* <b>Recommended usage:</b>
*
* {{{
* flow {
* val f = worker.ask(request)(timeout)
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see the [[akka.dispatch.Future]] companion object for a description of `flow`]
*/
def ask(message: Any)(implicit timeout: Timeout): Future[Any] = akka.pattern.ask(actorRef, message)(timeout)
/**
* Sends a message asynchronously and returns a [[akka.dispatch.Future]]
* holding the eventual reply message; this means that the target actor
* needs to send the result to the `sender` reference provided. The Future
* will be completed with an [[akka.actor.AskTimeoutException]] after the
* given timeout has expired; this is independent from any timeout applied
* while awaiting a result for this future (i.e. in
* `Await.result(..., timeout)`).
*
* <b>Warning:</b>
* When using future callbacks, inside actors you need to carefully avoid closing over
* the containing actors object, i.e. do not call methods or access mutable state
* on the enclosing actor from within the callback. This would break the actor
* encapsulation and may introduce synchronization bugs and race conditions because
* the callback will be scheduled concurrently to the enclosing actor. Unfortunately
* there is not yet a way to detect these illegal accesses at compile time.
*
* <b>Recommended usage:</b>
*
* {{{
* flow {
* val f = worker ? request
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see the [[akka.dispatch.Future]] companion object for a description of `flow`]
*/
def ?(message: Any)(implicit timeout: Timeout): Future[Any] = akka.pattern.ask(actorRef, message)(timeout)
}
/**
* Akka private optimized representation of the temporary actor spawned to
* receive the reply to an "ask" operation.
*/
private[akka] final class PromiseActorRef(
val provider: ActorRefProvider,
val path: ActorPath,
override val getParent: InternalActorRef,
val result: Promise[Any],
val deathWatch: DeathWatch) extends MinimalActorRef {
final val running = new AtomicBoolean(true)
override def !(message: Any)(implicit sender: ActorRef = null): Unit = if (running.get) message match {
case Status.Success(r) result.success(r)
case Status.Failure(f) result.failure(f)
case other result.success(other)
}
override def sendSystemMessage(message: SystemMessage): Unit = message match {
case _: Terminate stop()
case _
}
override def isTerminated = result.isCompleted
override def stop(): Unit = if (running.getAndSet(false)) {
deathWatch.publish(Terminated(this))
}
}
/**
* INTERNAL AKKA USE ONLY
*/
private[akka] def createAsker(provider: ActorRefProvider, timeout: Timeout): PromiseActorRef = {
val path = provider.tempPath()
val result = Promise[Any]()(provider.dispatcher)
val a = new PromiseActorRef(provider, path, provider.tempContainer, result, provider.deathWatch)
provider.registerTempActor(a, path)
val f = provider.scheduler.scheduleOnce(timeout.duration) { result.failure(new AskTimeoutException("Timed out")) }
result onComplete { _
try { a.stop(); f.cancel() }
finally { provider.unregisterTempActor(path) }
}
a
}
}