pekko/akka-stream/src/main/scala/akka/stream/scaladsl/Graph.scala
2016-02-16 13:01:05 +01:00

1161 lines
40 KiB
Scala

/**
* Copyright (C) 2014-2016 Typesafe Inc. <http://www.typesafe.com>
*/
package akka.stream.scaladsl
import akka.NotUsed
import akka.stream._
import akka.stream.impl._
import akka.stream.impl.fusing.GraphStages
import akka.stream.impl.fusing.GraphStages.MaterializedValueSource
import akka.stream.impl.Stages.{ DefaultAttributes, StageModule, SymbolicStage }
import akka.stream.impl.StreamLayout._
import akka.stream.scaladsl.Partition.PartitionOutOfBoundsException
import akka.stream.stage.{ OutHandler, InHandler, GraphStageLogic, GraphStage }
import scala.annotation.unchecked.uncheckedVariance
import scala.annotation.tailrec
import scala.collection.immutable
import scala.util.control.NoStackTrace
object Merge {
/**
* Create a new `Merge` with the specified number of input ports.
*
* @param inputPorts number of input ports
* @param eagerComplete if true, the merge will complete as soon as one of its inputs completes.
*/
def apply[T](inputPorts: Int, eagerComplete: Boolean = false): Merge[T] = new Merge(inputPorts, eagerComplete)
}
/**
* Merge several streams, taking elements as they arrive from input streams
* (picking randomly when several have elements ready).
*
* '''Emits when''' one of the inputs has an element available
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' all upstreams complete (eagerComplete=false) or one upstream completes (eagerComplete=true), default value is `false`
*
* '''Cancels when''' downstream cancels
*/
final class Merge[T] private (val inputPorts: Int, val eagerComplete: Boolean) extends GraphStage[UniformFanInShape[T, T]] {
// one input might seem counter intuitive but saves us from special handling in other places
require(inputPorts >= 1, "A Merge must have one or more input ports")
val in: immutable.IndexedSeq[Inlet[T]] = Vector.tabulate(inputPorts)(i Inlet[T]("Merge.in" + i))
val out: Outlet[T] = Outlet[T]("Merge.out")
override def initialAttributes = DefaultAttributes.merge
override val shape: UniformFanInShape[T, T] = UniformFanInShape(out, in: _*)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
private var initialized = false
private val pendingQueue = Array.ofDim[Inlet[T]](inputPorts)
private var pendingHead = 0
private var pendingTail = 0
private var runningUpstreams = inputPorts
private def upstreamsClosed = runningUpstreams == 0
private def pending: Boolean = pendingHead != pendingTail
override def preStart(): Unit = in.foreach(tryPull)
private def enqueue(in: Inlet[T]): Unit = {
pendingQueue(pendingTail % inputPorts) = in
pendingTail += 1
}
private def dequeueAndDispatch(): Unit = {
val in = pendingQueue(pendingHead % inputPorts)
pendingHead += 1
push(out, grab(in))
if (upstreamsClosed && !pending) completeStage()
else tryPull(in)
}
in.foreach { i
setHandler(i, new InHandler {
override def onPush(): Unit = {
if (isAvailable(out)) {
if (!pending) {
push(out, grab(i))
tryPull(i)
}
} else enqueue(i)
}
override def onUpstreamFinish() =
if (eagerComplete) {
in.foreach(cancel)
runningUpstreams = 0
if (!pending) completeStage()
} else {
runningUpstreams -= 1
if (upstreamsClosed && !pending) completeStage()
}
})
}
setHandler(out, new OutHandler {
override def onPull(): Unit = {
if (pending)
dequeueAndDispatch()
}
})
}
override def toString = "Merge"
}
object MergePreferred {
import FanInShape._
final class MergePreferredShape[T](val secondaryPorts: Int, _init: Init[T]) extends UniformFanInShape[T, T](secondaryPorts, _init) {
def this(secondaryPorts: Int, name: String) = this(secondaryPorts, Name[T](name))
override protected def construct(init: Init[T]): FanInShape[T] = new MergePreferredShape(secondaryPorts, init)
override def deepCopy(): MergePreferredShape[T] = super.deepCopy().asInstanceOf[MergePreferredShape[T]]
val preferred = newInlet[T]("preferred")
}
/**
* Create a new `MergePreferred` with the specified number of secondary input ports.
*
* @param secondaryPorts number of secondary input ports
* @param eagerComplete if true, the merge will complete as soon as one of its inputs completes.
*/
def apply[T](secondaryPorts: Int, eagerComplete: Boolean = false): MergePreferred[T] = new MergePreferred(secondaryPorts, eagerComplete)
}
/**
* Merge several streams, taking elements as they arrive from input streams
* (picking from preferred when several have elements ready).
*
* A `MergePreferred` has one `out` port, one `preferred` input port and 0 or more secondary `in` ports.
*
* '''Emits when''' one of the inputs has an element available, preferring
* a specified input if multiple have elements available
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' all upstreams complete (eagerComplete=false) or one upstream completes (eagerComplete=true), default value is `false`
*
* '''Cancels when''' downstream cancels
*
* A `Broadcast` has one `in` port and 2 or more `out` ports.
*/
final class MergePreferred[T] private (val secondaryPorts: Int, val eagerComplete: Boolean) extends GraphStage[MergePreferred.MergePreferredShape[T]] {
require(secondaryPorts >= 1, "A MergePreferred must have more than 0 secondary input ports")
override def initialAttributes = DefaultAttributes.mergePreferred
override val shape: MergePreferred.MergePreferredShape[T] =
new MergePreferred.MergePreferredShape(secondaryPorts, "MergePreferred")
def in(id: Int): Inlet[T] = shape.in(id)
def out: Outlet[T] = shape.out
def preferred: Inlet[T] = shape.preferred
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
var openInputs = secondaryPorts + 1
def onComplete(): Unit = {
openInputs -= 1
if (eagerComplete || openInputs == 0) completeStage()
}
override def preStart(): Unit = {
tryPull(preferred)
shape.inSeq.foreach(tryPull)
}
setHandler(out, eagerTerminateOutput)
val pullMe = Array.tabulate(secondaryPorts)(i {
val port = in(i)
() tryPull(port)
})
/*
* This determines the unfairness of the merge:
* - at 1 the preferred will grab 40% of the bandwidth against three equally fast secondaries
* - at 2 the preferred will grab almost all bandwidth against three equally fast secondaries
* (measured with eventLimit=1 in the GraphInterpreter, so may not be accurate)
*/
val maxEmitting = 2
var preferredEmitting = 0
setHandler(preferred, new InHandler {
override def onUpstreamFinish(): Unit = onComplete()
override def onPush(): Unit =
if (preferredEmitting == maxEmitting) () // blocked
else emitPreferred()
def emitPreferred(): Unit = {
preferredEmitting += 1
emit(out, grab(preferred), emitted)
tryPull(preferred)
}
val emitted = () {
preferredEmitting -= 1
if (isAvailable(preferred)) emitPreferred()
else if (preferredEmitting == 0) emitSecondary()
}
def emitSecondary(): Unit = {
var i = 0
while (i < secondaryPorts) {
val port = in(i)
if (isAvailable(port)) emit(out, grab(port), pullMe(i))
i += 1
}
}
})
var i = 0
while (i < secondaryPorts) {
val port = in(i)
val pullPort = pullMe(i)
setHandler(port, new InHandler {
override def onPush(): Unit = {
if (preferredEmitting > 0) () // blocked
else {
emit(out, grab(port), pullPort)
}
}
override def onUpstreamFinish(): Unit = onComplete()
})
i += 1
}
}
}
object Interleave {
/**
* Create a new `Interleave` with the specified number of input ports and given size of elements
* to take from each input.
*
* @param inputPorts number of input ports
* @param segmentSize number of elements to send downstream before switching to next input port
* @param eagerClose if true, interleave completes upstream if any of its upstream completes.
*/
def apply[T](inputPorts: Int, segmentSize: Int, eagerClose: Boolean = false): Graph[UniformFanInShape[T, T], NotUsed] =
GraphStages.withDetachedInputs(new Interleave[T](inputPorts, segmentSize, eagerClose))
}
/**
* Interleave represents deterministic merge which takes N elements per input stream,
* in-order of inputs, emits them downstream and then cycles/"wraps-around" the inputs.
*
* '''Emits when''' element is available from current input (depending on phase)
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' all upstreams complete (eagerClose=false) or one upstream completes (eagerClose=true)
*
* '''Cancels when''' downstream cancels
*
*/
final class Interleave[T] private (val inputPorts: Int, val segmentSize: Int, val eagerClose: Boolean) extends GraphStage[UniformFanInShape[T, T]] {
require(inputPorts > 1, "input ports must be > 1")
require(segmentSize > 0, "segmentSize must be > 0")
val in: immutable.IndexedSeq[Inlet[T]] = Vector.tabulate(inputPorts)(i Inlet[T]("Interleave.in" + i))
val out: Outlet[T] = Outlet[T]("Interleave.out")
override val shape: UniformFanInShape[T, T] = UniformFanInShape(out, in: _*)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
private var counter = 0
private var currentUpstreamIndex = 0
private var runningUpstreams = inputPorts
private def upstreamsClosed = runningUpstreams == 0
private def currentUpstream = in(currentUpstreamIndex)
private def switchToNextInput(): Unit = {
@tailrec
def nextInletIndex(index: Int): Int = {
val successor = index + 1 match {
case `inputPorts` 0
case x x
}
if (!isClosed(in(successor))) successor
else {
if (successor != currentUpstreamIndex) nextInletIndex(successor)
else {
completeStage()
0 // return dummy/min value to exit stage logic gracefully
}
}
}
counter = 0
currentUpstreamIndex = nextInletIndex(currentUpstreamIndex)
}
in.foreach { i
setHandler(i, new InHandler {
override def onPush(): Unit = {
push(out, grab(i))
counter += 1
if (counter == segmentSize) switchToNextInput()
}
override def onUpstreamFinish(): Unit = {
if (!eagerClose) {
runningUpstreams -= 1
if (!upstreamsClosed) {
if (i == currentUpstream) {
switchToNextInput()
if (isAvailable(out)) pull(currentUpstream)
}
} else completeStage()
} else completeStage()
}
})
}
setHandler(out, new OutHandler {
override def onPull(): Unit = if (!hasBeenPulled(currentUpstream)) tryPull(currentUpstream)
})
}
override def toString = "Interleave"
}
/**
* Merge two pre-sorted streams such that the resulting stream is sorted.
*
* '''Emits when''' both inputs have an element available
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' all upstreams complete
*
* '''Cancels when''' downstream cancels
*/
final class MergeSorted[T: Ordering] extends GraphStage[FanInShape2[T, T, T]] {
private val left = Inlet[T]("left")
private val right = Inlet[T]("right")
private val out = Outlet[T]("out")
override val shape = new FanInShape2(left, right, out)
override def createLogic(attr: Attributes) = new GraphStageLogic(shape) {
import Ordering.Implicits._
setHandler(left, ignoreTerminateInput)
setHandler(right, ignoreTerminateInput)
setHandler(out, eagerTerminateOutput)
var other: T = _
def nullOut(): Unit = other = null.asInstanceOf[T]
def dispatch(l: T, r: T): Unit =
if (l < r) { other = r; emit(out, l, readL) }
else { other = l; emit(out, r, readR) }
val dispatchR = dispatch(other, _: T)
val dispatchL = dispatch(_: T, other)
val passR = () emit(out, other, () { nullOut(); passAlong(right, out, doPull = true) })
val passL = () emit(out, other, () { nullOut(); passAlong(left, out, doPull = true) })
val readR = () read(right)(dispatchR, passL)
val readL = () read(left)(dispatchL, passR)
override def preStart(): Unit = {
// all fan-in stages need to eagerly pull all inputs to get cycles started
pull(right)
read(left)(l {
other = l
readR()
}, () passAlong(right, out))
}
}
}
object Broadcast {
/**
* Create a new `Broadcast` with the specified number of output ports.
*
* @param outputPorts number of output ports
* @param eagerCancel if true, broadcast cancels upstream if any of its downstreams cancel.
*/
def apply[T](outputPorts: Int, eagerCancel: Boolean = false): Broadcast[T] =
new Broadcast(outputPorts, eagerCancel)
}
/**
* Fan-out the stream to several streams emitting each incoming upstream element to all downstream consumers.
* It will not shut down until the subscriptions for at least two downstream subscribers have been established.
*
* '''Emits when''' all of the outputs stops backpressuring and there is an input element available
*
* '''Backpressures when''' any of the outputs backpressure
*
* '''Completes when''' upstream completes
*
* '''Cancels when'''
* If eagerCancel is enabled: when any downstream cancels; otherwise: when all downstreams cancel
*
*/
final class Broadcast[T](private val outputPorts: Int, eagerCancel: Boolean) extends GraphStage[UniformFanOutShape[T, T]] {
// one output might seem counter intuitive but saves us from special handling in other places
require(outputPorts >= 1, "A Broadcast must have one or more output ports")
val in: Inlet[T] = Inlet[T]("Broadast.in")
val out: immutable.IndexedSeq[Outlet[T]] = Vector.tabulate(outputPorts)(i Outlet[T]("Broadcast.out" + i))
override def initialAttributes = DefaultAttributes.broadcast
override val shape: UniformFanOutShape[T, T] = UniformFanOutShape(in, out: _*)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
private var pendingCount = outputPorts
private val pending = Array.fill[Boolean](outputPorts)(true)
private var downstreamsRunning = outputPorts
setHandler(in, new InHandler {
override def onPush(): Unit = {
pendingCount = downstreamsRunning
val elem = grab(in)
var idx = 0
val itr = out.iterator
while (itr.hasNext) {
val o = itr.next()
val i = idx
if (!isClosed(o)) {
push(o, elem)
pending(i) = true
}
idx += 1
}
}
})
private def tryPull(): Unit =
if (pendingCount == 0 && !hasBeenPulled(in)) pull(in)
{
var idx = 0
val itr = out.iterator
while (itr.hasNext) {
val out = itr.next()
val i = idx
setHandler(out, new OutHandler {
override def onPull(): Unit = {
pending(i) = false
pendingCount -= 1
tryPull()
}
override def onDownstreamFinish() = {
if (eagerCancel) completeStage()
else {
downstreamsRunning -= 1
if (downstreamsRunning == 0) completeStage()
else if (pending(i)) {
pending(i) = false
pendingCount -= 1
tryPull()
}
}
}
})
idx += 1
}
}
}
override def toString = "Broadcast"
}
object Partition {
case class PartitionOutOfBoundsException(msg: String) extends IndexOutOfBoundsException(msg) with NoStackTrace
/**
* Create a new `Partition` stage with the specified input type.
*
* @param outputPorts number of output ports
* @param partitioner function deciding which output each element will be targeted
*/
def apply[T](outputPorts: Int, partitioner: T Int): Partition[T] = new Partition(outputPorts, partitioner)
}
/**
* Fan-out the stream to several streams. emitting an incoming upstream element to one downstream consumer according
* to the partitioner function applied to the element
*
* '''Emits when''' emits when an element is available from the input and the chosen output has demand
*
* '''Backpressures when''' the currently chosen output back-pressures
*
* '''Completes when''' upstream completes and no output is pending
*
* '''Cancels when'''
* when all downstreams cancel
*/
final class Partition[T](outputPorts: Int, partitioner: T Int) extends GraphStage[UniformFanOutShape[T, T]] {
val in: Inlet[T] = Inlet[T]("Partition.in")
val out: Seq[Outlet[T]] = Seq.tabulate(outputPorts)(i Outlet[T]("Partition.out" + i))
override val shape: UniformFanOutShape[T, T] = UniformFanOutShape[T, T](in, out: _*)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
private var outPendingElem: Any = null
private var outPendingIdx: Int = _
private var downstreamRunning = outputPorts
setHandler(in, new InHandler {
override def onPush() = {
val elem = grab(in)
val idx = partitioner(elem)
if (idx < 0 || idx >= outputPorts)
failStage(PartitionOutOfBoundsException(s"partitioner must return an index in the range [0,${outputPorts - 1}]. returned: [$idx] for input [${elem.getClass.getName}]."))
else if (!isClosed(out(idx))) {
if (isAvailable(out(idx))) {
push(out(idx), elem)
if (out.exists(isAvailable(_)))
pull(in)
} else {
outPendingElem = elem
outPendingIdx = idx
}
} else if (out.exists(isAvailable(_)))
pull(in)
}
override def onUpstreamFinish(): Unit = {
if (outPendingElem == null)
completeStage()
}
})
out.zipWithIndex.foreach {
case (o, idx)
setHandler(o, new OutHandler {
override def onPull() = {
if (outPendingElem != null) {
val elem = outPendingElem.asInstanceOf[T]
if (idx == outPendingIdx) {
push(o, elem)
outPendingElem = null
if (!isClosed(in)) {
if (!hasBeenPulled(in)) {
pull(in)
}
} else
completeStage()
}
} else if (!hasBeenPulled(in))
pull(in)
}
override def onDownstreamFinish(): Unit = {
downstreamRunning -= 1
if (downstreamRunning == 0)
completeStage()
else if (outPendingElem != null) {
if (idx == outPendingIdx) {
outPendingElem = null
if (!hasBeenPulled(in))
pull(in)
}
}
}
})
}
}
override def toString = s"Partition($outputPorts)"
}
object Balance {
/**
* Create a new `Balance` with the specified number of output ports.
*
* @param outputPorts number of output ports
* @param waitForAllDownstreams if you use `waitForAllDownstreams = true` it will not start emitting
* elements to downstream outputs until all of them have requested at least one element,
* default value is `false`
*/
def apply[T](outputPorts: Int, waitForAllDownstreams: Boolean = false): Balance[T] =
new Balance(outputPorts, waitForAllDownstreams)
}
/**
* Fan-out the stream to several streams. Each upstream element is emitted to the first available downstream consumer.
* It will not shut down until the subscriptions
* for at least two downstream subscribers have been established.
*
* A `Balance` has one `in` port and 2 or more `out` ports.
*
* '''Emits when''' any of the outputs stops backpressuring; emits the element to the first available output
*
* '''Backpressures when''' all of the outputs backpressure
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' all downstreams cancel
*/
final class Balance[T](val outputPorts: Int, waitForAllDownstreams: Boolean) extends GraphStage[UniformFanOutShape[T, T]] {
// one output might seem counter intuitive but saves us from special handling in other places
require(outputPorts >= 1, "A Balance must have one or more output ports")
val in: Inlet[T] = Inlet[T]("Balance.in")
val out: immutable.IndexedSeq[Outlet[T]] = Vector.tabulate(outputPorts)(i Outlet[T]("Balance.out" + i))
override def initialAttributes = DefaultAttributes.balance
override val shape: UniformFanOutShape[T, T] = UniformFanOutShape[T, T](in, out: _*)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
private val pendingQueue = Array.ofDim[Outlet[T]](outputPorts)
private var pendingHead: Int = 0
private var pendingTail: Int = 0
private var needDownstreamPulls: Int = if (waitForAllDownstreams) outputPorts else 0
private var downstreamsRunning: Int = outputPorts
private def noPending: Boolean = pendingHead == pendingTail
private def enqueue(out: Outlet[T]): Unit = {
pendingQueue(pendingTail % outputPorts) = out
pendingTail += 1
}
private def dequeueAndDispatch(): Unit = {
val out = pendingQueue(pendingHead % outputPorts)
pendingHead += 1
push(out, grab(in))
if (!noPending) pull(in)
}
setHandler(in, new InHandler {
override def onPush(): Unit = dequeueAndDispatch()
})
out.foreach { o
setHandler(o, new OutHandler {
private var hasPulled = false
override def onPull(): Unit = {
if (!hasPulled) {
hasPulled = true
if (needDownstreamPulls > 0) needDownstreamPulls -= 1
}
if (needDownstreamPulls == 0) {
if (isAvailable(in)) {
if (noPending) {
push(o, grab(in))
}
} else {
if (!hasBeenPulled(in)) pull(in)
enqueue(o)
}
} else enqueue(o)
}
override def onDownstreamFinish() = {
downstreamsRunning -= 1
if (downstreamsRunning == 0) completeStage()
else if (!hasPulled && needDownstreamPulls > 0) {
needDownstreamPulls -= 1
if (needDownstreamPulls == 0 && !hasBeenPulled(in)) pull(in)
}
}
})
}
}
override def toString = "Balance"
}
object Zip {
/**
* Create a new `Zip`.
*/
def apply[A, B](): Zip[A, B] = new Zip()
}
/**
* Combine the elements of 2 streams into a stream of tuples.
*
* A `Zip` has a `left` and a `right` input port and one `out` port
*
* '''Emits when''' all of the inputs has an element available
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' any upstream completes
*
* '''Cancels when''' downstream cancels
*/
final class Zip[A, B] extends ZipWith2[A, B, (A, B)](Pair.apply) {
override def toString = "Zip"
}
/**
* Combine the elements of multiple streams into a stream of combined elements using a combiner function.
*
* '''Emits when''' all of the inputs has an element available
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' any upstream completes
*
* '''Cancels when''' downstream cancels
*/
object ZipWith extends ZipWithApply
/**
* Takes a stream of pair elements and splits each pair to two output streams.
*
* An `Unzip` has one `in` port and one `left` and one `right` output port.
*
* '''Emits when''' all of the outputs stops backpressuring and there is an input element available
*
* '''Backpressures when''' any of the outputs backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' any downstream cancels
*/
object Unzip {
/**
* Create a new `Unzip`.
*/
def apply[A, B](): Unzip[A, B] = new Unzip()
}
/**
* Combine the elements of multiple streams into a stream of the combined elements.
*/
final class Unzip[A, B]() extends UnzipWith2[(A, B), A, B](ConstantFun.scalaIdentityFunction) {
override def toString = "Unzip"
}
/**
* Transforms each element of input stream into multiple streams using a splitter function.
*
* '''Emits when''' all of the outputs stops backpressuring and there is an input element available
*
* '''Backpressures when''' any of the outputs backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' any downstream cancels
*/
object UnzipWith extends UnzipWithApply
object Concat {
/**
* Create a new `Concat`.
*/
def apply[T](inputPorts: Int = 2): Graph[UniformFanInShape[T, T], NotUsed] =
GraphStages.withDetachedInputs(new Concat[T](inputPorts))
}
/**
* Takes multiple streams and outputs one stream formed from the input streams
* by first emitting all of the elements from the first stream and then emitting
* all of the elements from the second stream, etc.
*
* A `Concat` has one `first` port, one `second` port and one `out` port.
*
* '''Emits when''' the current stream has an element available; if the current input completes, it tries the next one
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' all upstreams complete
*
* '''Cancels when''' downstream cancels
*/
final class Concat[T](inputPorts: Int) extends GraphStage[UniformFanInShape[T, T]] {
require(inputPorts > 1, "A Concat must have more than 1 input ports")
val in: immutable.IndexedSeq[Inlet[T]] = Vector.tabulate(inputPorts)(i Inlet[T]("Concat.in" + i))
val out: Outlet[T] = Outlet[T]("Concat.out")
override def initialAttributes = DefaultAttributes.concat
override val shape: UniformFanInShape[T, T] = UniformFanInShape(out, in: _*)
override def createLogic(inheritedAttributes: Attributes) = new GraphStageLogic(shape) {
var activeStream: Int = 0
{
var idxx = 0
val itr = in.iterator
while (itr.hasNext) {
val i = itr.next()
val idx = idxx
setHandler(i, new InHandler {
override def onPush() = {
push(out, grab(i))
}
override def onUpstreamFinish() = {
if (idx == activeStream) {
activeStream += 1
// Skip closed inputs
while (activeStream < inputPorts && isClosed(in(activeStream))) activeStream += 1
if (activeStream == inputPorts) completeStage()
else if (isAvailable(out)) pull(in(activeStream))
}
}
})
idxx += 1
}
}
setHandler(out, new OutHandler {
override def onPull() = pull(in(activeStream))
})
}
override def toString: String = s"Concat($inputPorts)"
}
object GraphDSL extends GraphApply {
class Builder[+M] private[stream] () {
private var moduleInProgress: Module = EmptyModule
/**
* INTERNAL API
*/
private[GraphDSL] def addEdge[T, U >: T](from: Outlet[T], to: Inlet[U]): Unit =
moduleInProgress = moduleInProgress.wire(from, to)
/**
* Import a graph into this module, performing a deep copy, discarding its
* materialized value and returning the copied Ports that are now to be
* connected.
*/
def add[S <: Shape](graph: Graph[S, _]): S = {
if (StreamLayout.Debug) StreamLayout.validate(graph.module)
val copy = graph.module.carbonCopy
moduleInProgress = moduleInProgress.compose(copy)
graph.shape.copyFromPorts(copy.shape.inlets, copy.shape.outlets).asInstanceOf[S]
}
/**
* INTERNAL API.
*
* This is only used by the materialization-importing apply methods of Source,
* Flow, Sink and Graph.
*/
private[stream] def add[S <: Shape, A](graph: Graph[S, _], transform: (A) Any): S = {
if (StreamLayout.Debug) StreamLayout.validate(graph.module)
val copy = graph.module.carbonCopy
moduleInProgress = moduleInProgress.compose(copy.transformMaterializedValue(transform.asInstanceOf[Any Any]))
graph.shape.copyFromPorts(copy.shape.inlets, copy.shape.outlets).asInstanceOf[S]
}
/**
* INTERNAL API.
*
* This is only used by the materialization-importing apply methods of Source,
* Flow, Sink and Graph.
*/
private[stream] def add[S <: Shape, A, B](graph: Graph[S, _], combine: (A, B) Any): S = {
if (StreamLayout.Debug) StreamLayout.validate(graph.module)
val copy = graph.module.carbonCopy
moduleInProgress = moduleInProgress.compose(copy, combine)
graph.shape.copyFromPorts(copy.shape.inlets, copy.shape.outlets).asInstanceOf[S]
}
/**
* Returns an [[Outlet]] that gives access to the materialized value of this graph. Once the graph is materialized
* this outlet will emit exactly one element which is the materialized value. It is possible to expose this
* outlet as an externally accessible outlet of a [[Source]], [[Sink]], [[Flow]] or [[BidiFlow]].
*
* It is possible to call this method multiple times to get multiple [[Outlet]] instances if necessary. All of
* the outlets will emit the materialized value.
*
* Be careful to not to feed the result of this outlet to a stage that produces the materialized value itself (for
* example to a [[Sink#fold]] that contributes to the materialized value) since that might lead to an unresolvable
* dependency cycle.
*
* @return The outlet that will emit the materialized value.
*/
def materializedValue: Outlet[M @uncheckedVariance] = {
val source = new MaterializedValueSource[M](moduleInProgress.materializedValueComputation)
moduleInProgress = moduleInProgress.composeNoMat(source.module)
source.out
}
private[stream] def deprecatedAndThen(port: OutPort, op: StageModule): Unit = {
moduleInProgress =
moduleInProgress
.compose(op)
.wire(port, op.inPort)
}
private[stream] def module: Module = moduleInProgress
/** Converts this Scala DSL element to it's Java DSL counterpart. */
def asJava: javadsl.GraphDSL.Builder[M] = new javadsl.GraphDSL.Builder()(this)
}
object Implicits {
@tailrec
private[stream] def findOut[I, O](b: Builder[_], junction: UniformFanOutShape[I, O], n: Int): Outlet[O] = {
if (n == junction.outArray.length)
throw new IllegalArgumentException(s"no more outlets free on $junction")
else if (b.module.downstreams.contains(junction.out(n))) findOut(b, junction, n + 1)
else junction.out(n)
}
@tailrec
private[stream] def findIn[I, O](b: Builder[_], junction: UniformFanInShape[I, O], n: Int): Inlet[I] = {
if (n == junction.inSeq.length)
throw new IllegalArgumentException(s"no more inlets free on $junction")
else if (b.module.upstreams.contains(junction.in(n))) findIn(b, junction, n + 1)
else junction.in(n)
}
sealed trait CombinerBase[+T] extends Any {
def importAndGetPort(b: Builder[_]): Outlet[T @uncheckedVariance]
def ~>[U >: T](to: Inlet[U])(implicit b: Builder[_]): Unit =
b.addEdge(importAndGetPort(b), to)
def ~>[Out](via: Graph[FlowShape[T, Out], Any])(implicit b: Builder[_]): PortOps[Out] = {
val s = b.add(via)
b.addEdge(importAndGetPort(b), s.in)
s.out
}
def ~>[Out](junction: UniformFanInShape[T, Out])(implicit b: Builder[_]): PortOps[Out] = {
def bind(n: Int): Unit = {
if (n == junction.inSeq.length)
throw new IllegalArgumentException(s"no more inlets free on $junction")
else if (b.module.upstreams.contains(junction.in(n))) bind(n + 1)
else b.addEdge(importAndGetPort(b), junction.in(n))
}
bind(0)
junction.out
}
def ~>[Out](junction: UniformFanOutShape[T, Out])(implicit b: Builder[_]): PortOps[Out] = {
b.addEdge(importAndGetPort(b), junction.in)
try findOut(b, junction, 0)
catch {
case e: IllegalArgumentException new DisabledPortOps(e.getMessage)
}
}
def ~>[Out](flow: FlowShape[T, Out])(implicit b: Builder[_]): PortOps[Out] = {
b.addEdge(importAndGetPort(b), flow.in)
flow.out
}
def ~>(to: Graph[SinkShape[T], _])(implicit b: Builder[_]): Unit =
b.addEdge(importAndGetPort(b), b.add(to).in)
def ~>(to: SinkShape[T])(implicit b: Builder[_]): Unit =
b.addEdge(importAndGetPort(b), to.in)
}
sealed trait ReverseCombinerBase[T] extends Any {
def importAndGetPortReverse(b: Builder[_]): Inlet[T]
def <~[U <: T](from: Outlet[U])(implicit b: Builder[_]): Unit =
b.addEdge(from, importAndGetPortReverse(b))
def <~[In](via: Graph[FlowShape[In, T], _])(implicit b: Builder[_]): ReversePortOps[In] = {
val s = b.add(via)
b.addEdge(s.out, importAndGetPortReverse(b))
s.in
}
def <~[In](junction: UniformFanOutShape[In, T])(implicit b: Builder[_]): ReversePortOps[In] = {
def bind(n: Int): Unit = {
if (n == junction.outArray.length)
throw new IllegalArgumentException(s"no more outlets free on $junction")
else if (b.module.downstreams.contains(junction.out(n))) bind(n + 1)
else b.addEdge(junction.out(n), importAndGetPortReverse(b))
}
bind(0)
junction.in
}
def <~[In](junction: UniformFanInShape[In, T])(implicit b: Builder[_]): ReversePortOps[In] = {
b.addEdge(junction.out, importAndGetPortReverse(b))
try findIn(b, junction, 0)
catch {
case e: IllegalArgumentException new DisabledReversePortOps(e.getMessage)
}
}
def <~[In](flow: FlowShape[In, T])(implicit b: Builder[_]): ReversePortOps[In] = {
b.addEdge(flow.out, importAndGetPortReverse(b))
flow.in
}
def <~(from: Graph[SourceShape[T], _])(implicit b: Builder[_]): Unit =
b.addEdge(b.add(from).out, importAndGetPortReverse(b))
def <~(from: SourceShape[T])(implicit b: Builder[_]): Unit =
b.addEdge(from.out, importAndGetPortReverse(b))
}
// Although Mat is always Unit, it cannot be removed as a type parameter, otherwise the "override type"
// won't work below
trait PortOps[+Out] extends FlowOps[Out, NotUsed] with CombinerBase[Out] {
override type Repr[+O] = PortOps[O]
override type Closed = Unit
def outlet: Outlet[Out @uncheckedVariance]
}
private class PortOpsImpl[+Out](override val outlet: Outlet[Out @uncheckedVariance], b: Builder[_])
extends PortOps[Out] {
override def withAttributes(attr: Attributes): Repr[Out] = throw settingAttrNotSupported
override def addAttributes(attr: Attributes): Repr[Out] = throw settingAttrNotSupported
override def named(name: String): Repr[Out] = throw settingAttrNotSupported
override def async: Repr[Out] = throw settingAttrNotSupported
private def settingAttrNotSupported =
new UnsupportedOperationException("Cannot set attributes on chained ops from a junction output port")
override def importAndGetPort(b: Builder[_]): Outlet[Out @uncheckedVariance] = outlet
override def via[T, Mat2](flow: Graph[FlowShape[Out, T], Mat2]): Repr[T] =
super.~>(flow)(b)
override private[scaladsl] def deprecatedAndThen[U](op: StageModule): Repr[U] = {
b.deprecatedAndThen(outlet, op)
new PortOpsImpl(op.shape.out.asInstanceOf[Outlet[U]], b)
}
def to[Mat2](sink: Graph[SinkShape[Out], Mat2]): Closed = {
super.~>(sink)(b)
}
}
private class DisabledPortOps[Out](msg: String) extends PortOpsImpl[Out](null, null) {
override def importAndGetPort(b: Builder[_]): Outlet[Out] = throw new IllegalArgumentException(msg)
override def via[T, Mat2](flow: Graph[FlowShape[Out, T], Mat2]): Repr[T] =
throw new IllegalArgumentException(msg)
}
implicit class ReversePortOps[In](val inlet: Inlet[In]) extends ReverseCombinerBase[In] {
override def importAndGetPortReverse(b: Builder[_]): Inlet[In] = inlet
}
final class DisabledReversePortOps[In](msg: String) extends ReversePortOps[In](null) {
override def importAndGetPortReverse(b: Builder[_]): Inlet[In] = throw new IllegalArgumentException(msg)
}
implicit final class FanInOps[In, Out](val j: UniformFanInShape[In, Out]) extends AnyVal with CombinerBase[Out] with ReverseCombinerBase[In] {
override def importAndGetPort(b: Builder[_]): Outlet[Out] = j.out
override def importAndGetPortReverse(b: Builder[_]): Inlet[In] = findIn(b, j, 0)
}
implicit final class FanOutOps[In, Out](val j: UniformFanOutShape[In, Out]) extends AnyVal with ReverseCombinerBase[In] {
override def importAndGetPortReverse(b: Builder[_]): Inlet[In] = j.in
}
implicit final class SinkArrow[T](val s: Graph[SinkShape[T], _]) extends AnyVal with ReverseCombinerBase[T] {
override def importAndGetPortReverse(b: Builder[_]): Inlet[T] = b.add(s).in
}
implicit final class SinkShapeArrow[T](val s: SinkShape[T]) extends AnyVal with ReverseCombinerBase[T] {
override def importAndGetPortReverse(b: Builder[_]): Inlet[T] = s.in
}
implicit final class FlowShapeArrow[I, O](val f: FlowShape[I, O]) extends AnyVal with ReverseCombinerBase[I] {
override def importAndGetPortReverse(b: Builder[_]): Inlet[I] = f.in
def <~>[I2, O2, Mat](bidi: Graph[BidiShape[O, O2, I2, I], Mat])(implicit b: Builder[_]): BidiShape[O, O2, I2, I] = {
val shape = b.add(bidi)
b.addEdge(f.out, shape.in1)
b.addEdge(shape.out2, f.in)
shape
}
def <~>[I2, O2](bidi: BidiShape[O, O2, I2, I])(implicit b: Builder[_]): BidiShape[O, O2, I2, I] = {
b.addEdge(f.out, bidi.in1)
b.addEdge(bidi.out2, f.in)
bidi
}
def <~>[M](flow: Graph[FlowShape[O, I], M])(implicit b: Builder[_]): Unit = {
val shape = b.add(flow)
b.addEdge(shape.out, f.in)
b.addEdge(f.out, shape.in)
}
}
implicit final class FlowArrow[I, O, M](val f: Graph[FlowShape[I, O], M]) extends AnyVal {
def <~>[I2, O2, Mat](bidi: Graph[BidiShape[O, O2, I2, I], Mat])(implicit b: Builder[_]): BidiShape[O, O2, I2, I] = {
val shape = b.add(bidi)
val flow = b.add(f)
b.addEdge(flow.out, shape.in1)
b.addEdge(shape.out2, flow.in)
shape
}
def <~>[I2, O2](bidi: BidiShape[O, O2, I2, I])(implicit b: Builder[_]): BidiShape[O, O2, I2, I] = {
val flow = b.add(f)
b.addEdge(flow.out, bidi.in1)
b.addEdge(bidi.out2, flow.in)
bidi
}
def <~>[M2](flow: Graph[FlowShape[O, I], M2])(implicit b: Builder[_]): Unit = {
val shape = b.add(flow)
val ff = b.add(f)
b.addEdge(shape.out, ff.in)
b.addEdge(ff.out, shape.in)
}
}
implicit final class BidiFlowShapeArrow[I1, O1, I2, O2](val bidi: BidiShape[I1, O1, I2, O2]) extends AnyVal {
def <~>[I3, O3](other: BidiShape[O1, O3, I3, I2])(implicit b: Builder[_]): BidiShape[O1, O3, I3, I2] = {
b.addEdge(bidi.out1, other.in1)
b.addEdge(other.out2, bidi.in2)
other
}
def <~>[I3, O3, M](otherFlow: Graph[BidiShape[O1, O3, I3, I2], M])(implicit b: Builder[_]): BidiShape[O1, O3, I3, I2] = {
val other = b.add(otherFlow)
b.addEdge(bidi.out1, other.in1)
b.addEdge(other.out2, bidi.in2)
other
}
def <~>(flow: FlowShape[O1, I2])(implicit b: Builder[_]): Unit = {
b.addEdge(bidi.out1, flow.in)
b.addEdge(flow.out, bidi.in2)
}
def <~>[M](f: Graph[FlowShape[O1, I2], M])(implicit b: Builder[_]): Unit = {
val flow = b.add(f)
b.addEdge(bidi.out1, flow.in)
b.addEdge(flow.out, bidi.in2)
}
}
import scala.language.implicitConversions
implicit def port2flow[T](from: Outlet[T])(implicit b: Builder[_]): PortOps[T] =
new PortOpsImpl(from, b)
implicit def fanOut2flow[I, O](j: UniformFanOutShape[I, O])(implicit b: Builder[_]): PortOps[O] =
new PortOpsImpl(findOut(b, j, 0), b)
implicit def flow2flow[I, O](f: FlowShape[I, O])(implicit b: Builder[_]): PortOps[O] =
new PortOpsImpl(f.out, b)
implicit final class SourceArrow[T](val s: Graph[SourceShape[T], _]) extends AnyVal with CombinerBase[T] {
override def importAndGetPort(b: Builder[_]): Outlet[T] = b.add(s).out
}
implicit final class SourceShapeArrow[T](val s: SourceShape[T]) extends AnyVal with CombinerBase[T] {
override def importAndGetPort(b: Builder[_]): Outlet[T] = s.out
}
}
}