/** * Copyright (C) 2014-2015 Typesafe Inc. */ package akka.stream.scaladsl import akka.actor.{ ActorRef, Props } import akka.stream.actor.ActorSubscriber import akka.stream.impl.Stages.DefaultAttributes import akka.stream.impl.StreamLayout.Module import akka.stream.impl._ import akka.stream.stage.{ Context, PushStage, SyncDirective, TerminationDirective } import akka.stream.{ javadsl, _ } import org.reactivestreams.{ Publisher, Subscriber } import scala.annotation.tailrec import scala.concurrent.duration.{ FiniteDuration, _ } import scala.concurrent.{ ExecutionContext, Future } import scala.util.{ Failure, Success, Try } /** * A `Sink` is a set of stream processing steps that has one open input and an attached output. * Can be used as a `Subscriber` */ final class Sink[-In, +Mat](private[stream] override val module: Module) extends Graph[SinkShape[In], Mat] { override val shape: SinkShape[In] = module.shape.asInstanceOf[SinkShape[In]] /** * Connect this `Sink` to a `Source` and run it. The returned value is the materialized value * of the `Source`, e.g. the `Subscriber` of a [[Source#subscriber]]. */ def runWith[Mat2](source: Graph[SourceShape[In], Mat2])(implicit materializer: Materializer): Mat2 = Source.fromGraph(source).to(this).run() def mapMaterializedValue[Mat2](f: Mat ⇒ Mat2): Sink[In, Mat2] = new Sink(module.transformMaterializedValue(f.asInstanceOf[Any ⇒ Any])) override def withAttributes(attr: Attributes): Sink[In, Mat] = new Sink(module.withAttributes(attr).nest()) override def named(name: String): Sink[In, Mat] = withAttributes(Attributes.name(name)) /** Converts this Scala DSL element to it's Java DSL counterpart. */ def asJava: javadsl.Sink[In, Mat] = new javadsl.Sink(this) } object Sink { /** INTERNAL API */ private[stream] def shape[T](name: String): SinkShape[T] = SinkShape(Inlet(name + ".in")) /** * A graph with the shape of a sink logically is a sink, this method makes * it so also in type. */ def fromGraph[T, M](g: Graph[SinkShape[T], M]): Sink[T, M] = g match { case s: Sink[T, M] ⇒ s case s: javadsl.Sink[T, M] ⇒ s.asScala case other ⇒ new Sink(other.module) } /** * Helper to create [[Sink]] from `Subscriber`. */ def apply[T](subscriber: Subscriber[T]): Sink[T, Unit] = new Sink(new SubscriberSink(subscriber, DefaultAttributes.subscriberSink, shape("SubscriberSink"))) /** * A `Sink` that immediately cancels its upstream after materialization. */ def cancelled[T]: Sink[T, Unit] = new Sink[Any, Unit](new CancelSink(DefaultAttributes.cancelledSink, shape("CancelledSink"))) /** * A `Sink` that materializes into a `Future` of the first value received. */ def head[T]: Sink[T, Future[T]] = new Sink(new HeadSink[T](DefaultAttributes.headSink, shape("HeadSink"))) /** * A `Sink` that materializes into a [[org.reactivestreams.Publisher]]. * that can handle `maxNumberOfSubscribers` [[org.reactivestreams.Subscriber]]s. * * If `maxNumberOfSubscribers` is greater than 1, the size of the `inputBuffer` configured for this stage * becomes the maximum number of elements that the fastest [[org.reactivestreams.Subscriber]] can be ahead * of the slowest one before slowing the processing down due to back pressure. */ def publisher[T](maxNumberOfSubscribers: Int): Sink[T, Publisher[T]] = new Sink( maxNumberOfSubscribers match { case 1 ⇒ new PublisherSink[T](DefaultAttributes.publisherSink, shape("PublisherSink")) case n ⇒ new FanoutPublisherSink[T](n, DefaultAttributes.fanoutPublisherSink, shape("FanoutPublisherSink")) }) /** * A `Sink` that will consume the stream and discard the elements. */ def ignore: Sink[Any, Future[Unit]] = new Sink(new BlackholeSink(DefaultAttributes.ignoreSink, shape("BlackholeSink"))) /** * A `Sink` that will invoke the given procedure for each received element. The sink is materialized * into a [[scala.concurrent.Future]] will be completed with `Success` when reaching the * normal end of the stream, or completed with `Failure` if there is a failure signaled in * the stream.. */ def foreach[T](f: T ⇒ Unit): Sink[T, Future[Unit]] = Flow[T].map(f).toMat(Sink.ignore)(Keep.right).named("foreachSink") /** * Combine several sinks with fun-out strategy like `Broadcast` or `Balance` and returns `Sink`. */ def combine[T, U](first: Sink[U, _], second: Sink[U, _], rest: Sink[U, _]*)(strategy: Int ⇒ Graph[UniformFanOutShape[T, U], Unit]): Sink[T, Unit] = Sink.fromGraph(FlowGraph.create() { implicit b ⇒ import FlowGraph.Implicits._ val d = b.add(strategy(rest.size + 2)) d.out(0) ~> first d.out(1) ~> second @tailrec def combineRest(idx: Int, i: Iterator[Sink[U, _]]): SinkShape[T] = if (i.hasNext) { d.out(idx) ~> i.next() combineRest(idx + 1, i) } else new SinkShape(d.in) combineRest(2, rest.iterator) }) /** * A `Sink` that will invoke the given function to each of the elements * as they pass in. The sink is materialized into a [[scala.concurrent.Future]] * * If `f` throws an exception and the supervision decision is * [[akka.stream.Supervision.Stop]] the `Future` will be completed with failure. * * If `f` throws an exception and the supervision decision is * [[akka.stream.Supervision.Resume]] or [[akka.stream.Supervision.Restart]] the * element is dropped and the stream continues. * * @see [[#mapAsyncUnordered]] */ def foreachParallel[T](parallelism: Int)(f: T ⇒ Unit)(implicit ec: ExecutionContext): Sink[T, Future[Unit]] = Flow[T].mapAsyncUnordered(parallelism)(t ⇒ Future(f(t))).toMat(Sink.ignore)(Keep.right) /** * A `Sink` that will invoke the given function for every received element, giving it its previous * output (or the given `zero` value) and the element as input. * The returned [[scala.concurrent.Future]] will be completed with value of the final * function evaluation when the input stream ends, or completed with `Failure` * if there is a failure signaled in the stream. */ def fold[U, T](zero: U)(f: (U, T) ⇒ U): Sink[T, Future[U]] = Flow[T].fold(zero)(f).toMat(Sink.head)(Keep.right).named("foldSink") /** * A `Sink` that when the flow is completed, either through a failure or normal * completion, apply the provided function with [[scala.util.Success]] * or [[scala.util.Failure]]. */ def onComplete[T](callback: Try[Unit] ⇒ Unit): Sink[T, Unit] = { def newOnCompleteStage(): PushStage[T, Unit] = { new PushStage[T, Unit] { override def onPush(elem: T, ctx: Context[Unit]): SyncDirective = ctx.pull() override def onUpstreamFailure(cause: Throwable, ctx: Context[Unit]): TerminationDirective = { callback(Failure(cause)) ctx.fail(cause) } override def onUpstreamFinish(ctx: Context[Unit]): TerminationDirective = { callback(Success[Unit](())) ctx.finish() } } } Flow[T].transform(newOnCompleteStage).to(Sink.ignore).named("onCompleteSink") } /** * Sends the elements of the stream to the given `ActorRef`. * If the target actor terminates the stream will be canceled. * When the stream is completed successfully the given `onCompleteMessage` * will be sent to the destination actor. * When the stream is completed with failure a [[akka.actor.Status.Failure]] * message will be sent to the destination actor. * * It will request at most `maxInputBufferSize` number of elements from * upstream, but there is no back-pressure signal from the destination actor, * i.e. if the actor is not consuming the messages fast enough the mailbox * of the actor will grow. For potentially slow consumer actors it is recommended * to use a bounded mailbox with zero `mailbox-push-timeout-time` or use a rate * limiting stage in front of this `Sink`. */ def actorRef[T](ref: ActorRef, onCompleteMessage: Any): Sink[T, Unit] = new Sink(new ActorRefSink(ref, onCompleteMessage, DefaultAttributes.actorRefSink, shape("ActorRefSink"))) /** * Creates a `Sink` that is materialized to an [[akka.actor.ActorRef]] which points to an Actor * created according to the passed in [[akka.actor.Props]]. Actor created by the `props` must * be [[akka.stream.actor.ActorSubscriber]]. */ def actorSubscriber[T](props: Props): Sink[T, ActorRef] = { require(classOf[ActorSubscriber].isAssignableFrom(props.actorClass()), "Actor must be ActorSubscriber") new Sink(new ActorSubscriberSink(props, DefaultAttributes.actorSubscriberSink, shape("ActorSubscriberSink"))) } /** * Creates a `Sink` that is materialized as an [[akka.stream.SinkQueue]]. * [[akka.stream.SinkQueue.pull]] method is pulling element from the stream and returns ``Future[Option[T]]``. * `Future` completes when element is available. * * `Sink` will request at most `bufferSize` number of elements from * upstream and then stop back pressure. * * @param bufferSize The size of the buffer in element count * @param timeout Timeout for ``SinkQueue.pull():Future[Option[T] ]`` */ def queue[T](bufferSize: Int, timeout: FiniteDuration = 5.seconds): Sink[T, SinkQueue[T]] = { require(bufferSize >= 0, "bufferSize must be greater than or equal to 0") new Sink(new AcknowledgeSink(bufferSize, DefaultAttributes.acknowledgeSink, shape("AcknowledgeSink"), timeout)) } }