/** * Copyright (C) 2014-2016 Lightbend Inc. */ package docs.stream //#imports import akka.{ Done, NotUsed } import akka.actor.ActorSystem import akka.stream.{ ClosedShape, ActorMaterializer, OverflowStrategy } import akka.stream.scaladsl._ import scala.concurrent.Await import scala.concurrent.Future //#imports import akka.testkit.AkkaSpec object TwitterStreamQuickstartDocSpec { //#model final case class Author(handle: String) final case class Hashtag(name: String) final case class Tweet(author: Author, timestamp: Long, body: String) { def hashtags: Set[Hashtag] = body.split(" ").collect { case t if t.startsWith("#") => Hashtag(t) }.toSet } val akka = Hashtag("#akka") //#model // format: OFF //#tweet-source val tweets: Source[Tweet, NotUsed] //#tweet-source // format: ON = Source( Tweet(Author("rolandkuhn"), System.currentTimeMillis, "#akka rocks!") :: Tweet(Author("patriknw"), System.currentTimeMillis, "#akka !") :: Tweet(Author("bantonsson"), System.currentTimeMillis, "#akka !") :: Tweet(Author("drewhk"), System.currentTimeMillis, "#akka !") :: Tweet(Author("ktosopl"), System.currentTimeMillis, "#akka on the rocks!") :: Tweet(Author("mmartynas"), System.currentTimeMillis, "wow #akka !") :: Tweet(Author("akkateam"), System.currentTimeMillis, "#akka rocks!") :: Tweet(Author("bananaman"), System.currentTimeMillis, "#bananas rock!") :: Tweet(Author("appleman"), System.currentTimeMillis, "#apples rock!") :: Tweet(Author("drama"), System.currentTimeMillis, "we compared #apples to #oranges!") :: Nil) } class TwitterStreamQuickstartDocSpec extends AkkaSpec { import TwitterStreamQuickstartDocSpec._ implicit val executionContext = system.dispatcher // Disable println def println(s: Any): Unit = () trait Example1 { //#first-sample //#materializer-setup implicit val system = ActorSystem("reactive-tweets") implicit val materializer = ActorMaterializer() //#materializer-setup //#first-sample } implicit val materializer = ActorMaterializer() "filter and map" in { //#first-sample //#authors-filter-map val authors: Source[Author, NotUsed] = tweets .filter(_.hashtags.contains(akka)) .map(_.author) //#first-sample //#authors-filter-map trait Example3 { //#authors-collect val authors: Source[Author, NotUsed] = tweets.collect { case t if t.hashtags.contains(akka) => t.author } //#authors-collect } //#first-sample //#authors-foreachsink-println authors.runWith(Sink.foreach(println)) //#authors-foreachsink-println //#first-sample //#authors-foreach-println authors.runForeach(println) //#authors-foreach-println } "mapConcat hashtags" in { //#hashtags-mapConcat val hashtags: Source[Hashtag, NotUsed] = tweets.mapConcat(_.hashtags.toList) //#hashtags-mapConcat } trait HiddenDefinitions { //#graph-dsl-broadcast val writeAuthors: Sink[Author, Unit] = ??? val writeHashtags: Sink[Hashtag, Unit] = ??? //#graph-dsl-broadcast } "simple broadcast" in { val writeAuthors: Sink[Author, Future[Done]] = Sink.ignore val writeHashtags: Sink[Hashtag, Future[Done]] = Sink.ignore // format: OFF //#graph-dsl-broadcast val g = RunnableGraph.fromGraph(GraphDSL.create() { implicit b => import GraphDSL.Implicits._ val bcast = b.add(Broadcast[Tweet](2)) tweets ~> bcast.in bcast.out(0) ~> Flow[Tweet].map(_.author) ~> writeAuthors bcast.out(1) ~> Flow[Tweet].mapConcat(_.hashtags.toList) ~> writeHashtags ClosedShape }) g.run() //#graph-dsl-broadcast // format: ON } "slowProcessing" in { def slowComputation(t: Tweet): Long = { Thread.sleep(500) // act as if performing some heavy computation 42 } //#tweets-slow-consumption-dropHead tweets .buffer(10, OverflowStrategy.dropHead) .map(slowComputation) .runWith(Sink.ignore) //#tweets-slow-consumption-dropHead } "backpressure by readline" in { trait X { import scala.concurrent.duration._ //#backpressure-by-readline val completion: Future[Done] = Source(1 to 10) .map(i => { println(s"map => $i"); i }) .runForeach { i => readLine(s"Element = $i; continue reading? [press enter]\n") } Await.ready(completion, 1.minute) //#backpressure-by-readline } } "count elements on finite stream" in { //#tweets-fold-count val count: Flow[Tweet, Int, NotUsed] = Flow[Tweet].map(_ => 1) val sumSink: Sink[Int, Future[Int]] = Sink.fold[Int, Int](0)(_ + _) val counterGraph: RunnableGraph[Future[Int]] = tweets .via(count) .toMat(sumSink)(Keep.right) val sum: Future[Int] = counterGraph.run() sum.foreach(c => println(s"Total tweets processed: $c")) //#tweets-fold-count new AnyRef { //#tweets-fold-count-oneline val sum: Future[Int] = tweets.map(t => 1).runWith(sumSink) //#tweets-fold-count-oneline } } "materialize multiple times" in { val tweetsInMinuteFromNow = tweets // not really in second, just acting as if //#tweets-runnable-flow-materialized-twice val sumSink = Sink.fold[Int, Int](0)(_ + _) val counterRunnableGraph: RunnableGraph[Future[Int]] = tweetsInMinuteFromNow .filter(_.hashtags contains akka) .map(t => 1) .toMat(sumSink)(Keep.right) // materialize the stream once in the morning val morningTweetsCount: Future[Int] = counterRunnableGraph.run() // and once in the evening, reusing the flow val eveningTweetsCount: Future[Int] = counterRunnableGraph.run() //#tweets-runnable-flow-materialized-twice val sum: Future[Int] = counterRunnableGraph.run() sum.map { c => println(s"Total tweets processed: $c") } } }