/** * Copyright (C) 2009-2015 Typesafe Inc. */ package akka.cluster.ddata import java.util.concurrent.atomic.AtomicLong import scala.annotation.tailrec import scala.collection.immutable.TreeMap import akka.cluster.Cluster import akka.cluster.UniqueAddress /** * VersionVector module with helper classes and methods. */ object VersionVector { /** * INTERNAL API */ private[akka] val emptyVersions: TreeMap[UniqueAddress, Long] = TreeMap.empty val empty: VersionVector = new VersionVector(emptyVersions) def apply(): VersionVector = empty /** * Java API */ def create(): VersionVector = empty sealed trait Ordering case object After extends Ordering case object Before extends Ordering case object Same extends Ordering case object Concurrent extends Ordering /** * Marker to ensure that we do a full order comparison instead of bailing out early. */ private case object FullOrder extends Ordering /** * Java API: The `VersionVector.After` instance */ def AfterInstance = After /** * Java API: The `VersionVector.Before` instance */ def BeforeInstance = Before /** * Java API: The `VersionVector.Same` instance */ def SameInstance = Same /** * Java API: The `VersionVector.Concurrent` instance */ def ConcurrentInstance = Concurrent private object Timestamp { final val Zero = 0L final val EndMarker = Long.MinValue val counter = new AtomicLong(1L) } /** * Marker to signal that we have reached the end of a version vector. */ private val cmpEndMarker = (null, Timestamp.EndMarker) } /** * Representation of a Vector-based clock (counting clock), inspired by Lamport logical clocks. * {{{ * Reference: * 1) Leslie Lamport (1978). "Time, clocks, and the ordering of events in a distributed system". Communications of the ACM 21 (7): 558-565. * 2) Friedemann Mattern (1988). "Virtual Time and Global States of Distributed Systems". Workshop on Parallel and Distributed Algorithms: pp. 215-226 * }}} * * Based on code from `akka.cluster.VectorClock`. * * This class is immutable, i.e. "modifying" methods return a new instance. */ @SerialVersionUID(1L) final case class VersionVector private[akka] ( private[akka] val versions: TreeMap[UniqueAddress, Long]) extends ReplicatedData with ReplicatedDataSerialization with RemovedNodePruning { type T = VersionVector import VersionVector._ /** * Increment the version for the node passed as argument. Returns a new VersionVector. */ def +(node: Cluster): VersionVector = increment(node) /** * INTERNAL API * Increment the version for the node passed as argument. Returns a new VersionVector. */ private[akka] def +(node: UniqueAddress): VersionVector = increment(node) /** * Increment the version for the node passed as argument. Returns a new VersionVector. */ def increment(node: Cluster): VersionVector = increment(node.selfUniqueAddress) /** * INTERNAL API * Increment the version for the node passed as argument. Returns a new VersionVector. */ private[akka] def increment(node: UniqueAddress): VersionVector = copy(versions = versions.updated(node, Timestamp.counter.getAndIncrement())) /** * Returns true if this and that are concurrent else false. */ def <>(that: VersionVector): Boolean = compareOnlyTo(that, Concurrent) eq Concurrent /** * Returns true if this is before that else false. */ def <(that: VersionVector): Boolean = compareOnlyTo(that, Before) eq Before /** * Returns true if this is after that else false. */ def >(that: VersionVector): Boolean = compareOnlyTo(that, After) eq After /** * Returns true if this VersionVector has the same history as the 'that' VersionVector else false. */ def ==(that: VersionVector): Boolean = compareOnlyTo(that, Same) eq Same /** * Version vector comparison according to the semantics described by compareTo, with the ability to bail * out early if the we can't reach the Ordering that we are looking for. * * The ordering always starts with Same and can then go to Same, Before or After * If we're on After we can only go to After or Concurrent * If we're on Before we can only go to Before or Concurrent * If we go to Concurrent we exit the loop immediately * * If you send in the ordering FullOrder, you will get a full comparison. */ private final def compareOnlyTo(that: VersionVector, order: Ordering): Ordering = { def nextOrElse[A](iter: Iterator[A], default: A): A = if (iter.hasNext) iter.next() else default def compare(i1: Iterator[(UniqueAddress, Long)], i2: Iterator[(UniqueAddress, Long)], requestedOrder: Ordering): Ordering = { @tailrec def compareNext(nt1: (UniqueAddress, Long), nt2: (UniqueAddress, Long), currentOrder: Ordering): Ordering = if ((requestedOrder ne FullOrder) && (currentOrder ne Same) && (currentOrder ne requestedOrder)) currentOrder else if ((nt1 eq cmpEndMarker) && (nt2 eq cmpEndMarker)) currentOrder // i1 is empty but i2 is not, so i1 can only be Before else if (nt1 eq cmpEndMarker) { if (currentOrder eq After) Concurrent else Before } // i2 is empty but i1 is not, so i1 can only be After else if (nt2 eq cmpEndMarker) { if (currentOrder eq Before) Concurrent else After } else { // compare the nodes val nc = nt1._1 compareTo nt2._1 if (nc == 0) { // both nodes exist compare the timestamps // same timestamp so just continue with the next nodes if (nt1._2 == nt2._2) compareNext(nextOrElse(i1, cmpEndMarker), nextOrElse(i2, cmpEndMarker), currentOrder) else if (nt1._2 < nt2._2) { // t1 is less than t2, so i1 can only be Before if (currentOrder eq After) Concurrent else compareNext(nextOrElse(i1, cmpEndMarker), nextOrElse(i2, cmpEndMarker), Before) } else { // t2 is less than t1, so i1 can only be After if (currentOrder eq Before) Concurrent else compareNext(nextOrElse(i1, cmpEndMarker), nextOrElse(i2, cmpEndMarker), After) } } else if (nc < 0) { // this node only exists in i1 so i1 can only be After if (currentOrder eq Before) Concurrent else compareNext(nextOrElse(i1, cmpEndMarker), nt2, After) } else { // this node only exists in i2 so i1 can only be Before if (currentOrder eq After) Concurrent else compareNext(nt1, nextOrElse(i2, cmpEndMarker), Before) } } compareNext(nextOrElse(i1, cmpEndMarker), nextOrElse(i2, cmpEndMarker), Same) } if ((this eq that) || (this.versions eq that.versions)) Same else compare(this.versions.iterator, that.versions.iterator, if (order eq Concurrent) FullOrder else order) } /** * Compare two version vectors. The outcome will be one of the following: *

* {{{ * 1. Version 1 is SAME (==) as Version 2 iff for all i c1(i) == c2(i) * 2. Version 1 is BEFORE (<) Version 2 iff for all i c1(i) <= c2(i) and there exist a j such that c1(j) < c2(j) * 3. Version 1 is AFTER (>) Version 2 iff for all i c1(i) >= c2(i) and there exist a j such that c1(j) > c2(j). * 4. Version 1 is CONCURRENT (<>) to Version 2 otherwise. * }}} */ def compareTo(that: VersionVector): Ordering = { compareOnlyTo(that, FullOrder) } /** * Merges this VersionVector with another VersionVector. E.g. merges its versioned history. */ def merge(that: VersionVector): VersionVector = { var mergedVersions = that.versions for ((node, time) ← versions) { val mergedVersionsCurrentTime = mergedVersions.getOrElse(node, Timestamp.Zero) if (time > mergedVersionsCurrentTime) mergedVersions = mergedVersions.updated(node, time) } VersionVector(mergedVersions) } override def needPruningFrom(removedNode: UniqueAddress): Boolean = versions.contains(removedNode) override def prune(removedNode: UniqueAddress, collapseInto: UniqueAddress): VersionVector = copy(versions = versions - removedNode) + collapseInto override def pruningCleanup(removedNode: UniqueAddress): VersionVector = copy(versions = versions - removedNode) override def toString = versions.map { case ((n, t)) ⇒ n + " -> " + t }.mkString("VersionVector(", ", ", ")") }