Restructuring the pattern internals so it is modular

This commit is contained in:
Viktor Klang 2012-02-01 13:37:57 +01:00
parent 0c02adaa75
commit aca5693ce6
6 changed files with 150 additions and 139 deletions

View file

@ -22,7 +22,69 @@ class AskTimeoutException(message: String, cause: Throwable) extends TimeoutExce
/**
* This object contains implementation details of the ask pattern.
*/
object AskSupport {
trait AskSupport {
/**
* Import this implicit conversion to gain `?` and `ask` methods on
* [[akka.actor.ActorRef]], which will defer to the
* `ask(actorRef, message)(timeout)` method defined here.
*
* {{{
* import akka.pattern.ask
*
* val future = actor ? message // => ask(actor, message)
* val future = actor ask message // => ask(actor, message)
* val future = actor.ask(message)(timeout) // => ask(actor, message)(timeout)
* }}}
*
* All of the above use an implicit [[akka.actor.Timeout]].
*/
implicit def ask(actorRef: ActorRef): AskableActorRef = new AskableActorRef(actorRef)
/**
* Sends a message asynchronously and returns a [[akka.dispatch.Future]]
* holding the eventual reply message; this means that the target actor
* needs to send the result to the `sender` reference provided. The Future
* will be completed with an [[akka.actor.AskTimeoutException]] after the
* given timeout has expired; this is independent from any timeout applied
* while awaiting a result for this future (i.e. in
* `Await.result(..., timeout)`).
*
* <b>Warning:</b>
* When using future callbacks, inside actors you need to carefully avoid closing over
* the containing actors object, i.e. do not call methods or access mutable state
* on the enclosing actor from within the callback. This would break the actor
* encapsulation and may introduce synchronization bugs and race conditions because
* the callback will be scheduled concurrently to the enclosing actor. Unfortunately
* there is not yet a way to detect these illegal accesses at compile time.
*
* <b>Recommended usage:</b>
*
* {{{
* val f = ask(worker, request)(timeout)
* flow {
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see [[akka.dispatch.Future]] for a description of `flow`]
*/
def ask(actorRef: ActorRef, message: Any)(implicit timeout: Timeout): Future[Any] = actorRef match {
case ref: InternalActorRef if ref.isTerminated
actorRef.tell(message)
Promise.failed(new AskTimeoutException("sending to terminated ref breaks promises"))(ref.provider.dispatcher)
case ref: InternalActorRef
val provider = ref.provider
if (timeout.duration.length <= 0) {
actorRef.tell(message)
Promise.failed(new AskTimeoutException("not asking with negative timeout"))(provider.dispatcher)
} else {
val a = createAsker(provider, timeout)
actorRef.tell(message, a)
a.result
}
case _ throw new IllegalArgumentException("incompatible ActorRef " + actorRef)
}
/**
* Implementation detail of the ask pattern enrichment of ActorRef

View file

@ -0,0 +1,47 @@
/**
* Copyright (C) 2009-2012 Typesafe Inc. <http://www.typesafe.com>
*/
package akka.pattern
import akka.actor.{ ActorRef, Actor, ActorSystem, Props, PoisonPill, Terminated, ReceiveTimeout, ActorTimeoutException }
import akka.dispatch.{ Promise, Future }
import akka.util.Duration
trait GracefulStopSupport {
/**
* Returns a [[akka.dispatch.Future]] that will be completed with success (value `true`) when
* existing messages of the target actor has been processed and the actor has been
* terminated.
*
* Useful when you need to wait for termination or compose ordered termination of several actors.
*
* If the target actor isn't terminated within the timeout the [[akka.dispatch.Future]]
* is completed with failure [[akka.actor.ActorTimeoutException]].
*/
def gracefulStop(target: ActorRef, timeout: Duration)(implicit system: ActorSystem): Future[Boolean] = {
if (target.isTerminated) {
Promise.successful(true)
} else {
val result = Promise[Boolean]()
system.actorOf(Props(new Actor {
// Terminated will be received when target has been stopped
context watch target
target ! PoisonPill
// ReceiveTimeout will be received if nothing else is received within the timeout
context setReceiveTimeout timeout
def receive = {
case Terminated(a) if a == target
result success true
context stop self
case ReceiveTimeout
result failure new ActorTimeoutException(
"Failed to stop [%s] within [%s]".format(target.path, context.receiveTimeout))
context stop self
}
}))
result
}
}
}

View file

@ -3,13 +3,46 @@
*/
package akka.pattern
import akka.actor.ActorRef
import akka.dispatch.Future
import akka.actor.{ Status, ActorRef }
object PipeToSupport {
trait PipeToSupport {
class PipeableFuture[T](val future: Future[T]) {
final class PipeableFuture[T](val future: Future[T]) {
def pipeTo(actorRef: ActorRef): Future[T] = akka.pattern.pipe(future, actorRef)
}
/**
* Import this implicit conversion to gain the `pipeTo` method on [[akka.dispatch.Future]]:
*
* {{{
* import akka.pattern.pipeTo
*
* Future { doExpensiveCalc() } pipeTo nextActor
* }}}
*/
implicit def pipeTo[T](future: Future[T]): PipeableFuture[T] = new PipeableFuture(future)
/**
* Register an onComplete callback on this [[akka.dispatch.Future]] to send
* the result to the given actor reference. Returns the original Future to
* allow method chaining.
*
* <b>Recommended usage example:</b>
*
* {{{
* val f = ask(worker, request)(timeout)
* flow {
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see [[akka.dispatch.Future]] for a description of `flow`]
*/
def pipe[T](future: Future[T], recipient: ActorRef): Future[T] =
future onComplete {
case Right(r) recipient ! r
case Left(f) recipient ! Status.Failure(f)
}
}

View file

@ -40,137 +40,6 @@ import akka.util.{ Timeout, Duration }
* ask(actor, message);
* }}}
*/
package object pattern {
/**
* Import this implicit conversion to gain `?` and `ask` methods on
* [[akka.actor.ActorRef]], which will defer to the
* `ask(actorRef, message)(timeout)` method defined here.
*
* {{{
* import akka.pattern.ask
*
* val future = actor ? message // => ask(actor, message)
* val future = actor ask message // => ask(actor, message)
* val future = actor.ask(message)(timeout) // => ask(actor, message)(timeout)
* }}}
*
* All of the above use an implicit [[akka.actor.Timeout]].
*/
implicit def ask(actorRef: ActorRef): AskSupport.AskableActorRef = new AskSupport.AskableActorRef(actorRef)
/**
* Sends a message asynchronously and returns a [[akka.dispatch.Future]]
* holding the eventual reply message; this means that the target actor
* needs to send the result to the `sender` reference provided. The Future
* will be completed with an [[akka.actor.AskTimeoutException]] after the
* given timeout has expired; this is independent from any timeout applied
* while awaiting a result for this future (i.e. in
* `Await.result(..., timeout)`).
*
* <b>Warning:</b>
* When using future callbacks, inside actors you need to carefully avoid closing over
* the containing actors object, i.e. do not call methods or access mutable state
* on the enclosing actor from within the callback. This would break the actor
* encapsulation and may introduce synchronization bugs and race conditions because
* the callback will be scheduled concurrently to the enclosing actor. Unfortunately
* there is not yet a way to detect these illegal accesses at compile time.
*
* <b>Recommended usage:</b>
*
* {{{
* val f = ask(worker, request)(timeout)
* flow {
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see [[akka.dispatch.Future]] for a description of `flow`]
*/
def ask(actorRef: ActorRef, message: Any)(implicit timeout: Timeout): Future[Any] = actorRef match {
case ref: InternalActorRef if ref.isTerminated
actorRef.tell(message)
Promise.failed(new AskTimeoutException("sending to terminated ref breaks promises"))(ref.provider.dispatcher)
case ref: InternalActorRef
val provider = ref.provider
if (timeout.duration.length <= 0) {
actorRef.tell(message)
Promise.failed(new AskTimeoutException("not asking with negative timeout"))(provider.dispatcher)
} else {
val a = AskSupport.createAsker(provider, timeout)
actorRef.tell(message, a)
a.result
}
case _ throw new IllegalArgumentException("incompatible ActorRef " + actorRef)
}
/**
* Import this implicit conversion to gain the `pipeTo` method on [[akka.dispatch.Future]]:
*
* {{{
* import akka.pattern.pipeTo
*
* Future { doExpensiveCalc() } pipeTo nextActor
* }}}
*/
implicit def pipeTo[T](future: Future[T]): PipeToSupport.PipeableFuture[T] = new PipeToSupport.PipeableFuture(future)
/**
* Register an onComplete callback on this [[akka.dispatch.Future]] to send
* the result to the given actor reference. Returns the original Future to
* allow method chaining.
*
* <b>Recommended usage example:</b>
*
* {{{
* val f = ask(worker, request)(timeout)
* flow {
* EnrichedRequest(request, f())
* } pipeTo nextActor
* }}}
*
* [see [[akka.dispatch.Future]] for a description of `flow`]
*/
def pipe[T](future: Future[T], recipient: ActorRef): Future[T] =
future onComplete {
case Right(r) recipient ! r
case Left(f) recipient ! Status.Failure(f)
}
/**
* Returns a [[akka.dispatch.Future]] that will be completed with success (value `true`) when
* existing messages of the target actor has been processed and the actor has been
* terminated.
*
* Useful when you need to wait for termination or compose ordered termination of several actors.
*
* If the target actor isn't terminated within the timeout the [[akka.dispatch.Future]]
* is completed with failure [[akka.actor.ActorTimeoutException]].
*/
def gracefulStop(target: ActorRef, timeout: Duration)(implicit system: ActorSystem): Future[Boolean] = {
if (target.isTerminated) {
Promise.successful(true)
} else {
val result = Promise[Boolean]()
system.actorOf(Props(new Actor {
// Terminated will be received when target has been stopped
context watch target
target ! PoisonPill
// ReceiveTimeout will be received if nothing else is received within the timeout
context setReceiveTimeout timeout
def receive = {
case Terminated(a) if a == target
result success true
context stop self
case ReceiveTimeout
result failure new ActorTimeoutException(
"Failed to stop [%s] within [%s]".format(target.path, context.receiveTimeout))
context stop self
}
}))
result
}
}
package object pattern extends PipeToSupport with AskSupport with GracefulStopSupport {
}

View file

@ -766,7 +766,7 @@ trait ScatterGatherFirstCompletedLike { this: RouterConfig ⇒
{
case (sender, message)
val provider: ActorRefProvider = routeeProvider.context.asInstanceOf[ActorCell].systemImpl.provider
val asker = AskSupport.createAsker(provider, within)
val asker = akka.pattern.createAsker(provider, within)
asker.result.pipeTo(sender)
toAll(asker, routeeProvider.routees)
}

View file

@ -82,8 +82,8 @@ akka {
"support ask" in {
Await.result(here ? "ping", timeout.duration) match {
case ("pong", s: akka.pattern.AskSupport.PromiseActorRef) // good
case m fail(m + " was not (pong, AskActorRef)")
case ("pong", s: akka.pattern.PromiseActorRef) // good
case m fail(m + " was not (pong, AskActorRef)")
}
}