diff --git a/akka-docs/src/main/paradox/java/distributed-data.md b/akka-docs/src/main/paradox/java/distributed-data.md
index 0813e8e92c..8192e14b0d 100644
--- a/akka-docs/src/main/paradox/java/distributed-data.md
+++ b/akka-docs/src/main/paradox/java/distributed-data.md
@@ -41,7 +41,11 @@ Below is an example of an actor that schedules tick messages to itself and for e
adds or removes elements from a `ORSet` (observed-remove set). It also subscribes to
changes of this.
-@@snip [DataBot.java]($code$/java/jdocs/ddata/DataBot.java) { #data-bot }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #data-bot }
+
+Java
+: @@snip [DataBot.java]($code$/java/jdocs/ddata/DataBot.java) { #data-bot }
### Update
@@ -55,7 +59,7 @@ will then be replicated according to the given consistency level.
The `modify` function is called by the `Replicator` actor and must therefore be a pure
function that only uses the data parameter and stable fields from enclosing scope. It must
-for example not access the sender reference of an enclosing actor.
+for example not access the sender (@scala[`sender()`]@java[`getSender()`]) reference of an enclosing actor.
`Update`
is intended to only be sent from an actor running in same local
@@ -66,7 +70,7 @@ for example not access the sender reference of an enclosing actor.
You supply a write consistency level which has the following meaning:
- * `writeLocal` the value will immediately only be written to the local replica,
+ * @scala[`WriteLocal`]@java[`writeLocal`] the value will immediately only be written to the local replica,
and later disseminated with gossip
* `WriteTo(n)` the value will immediately be written to at least `n` replicas,
including the local replica
@@ -83,7 +87,11 @@ are prefered over unreachable nodes.
Note that `WriteMajority` has a `minCap` parameter that is useful to specify to achieve better safety for small clusters.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update }
As reply of the `Update` a `Replicator.UpdateSuccess` is sent to the sender of the
`Update` if the value was successfully replicated according to the supplied consistency
@@ -92,9 +100,18 @@ sent back. Note that a `Replicator.UpdateTimeout` reply does not mean that the u
or was rolled back. It may still have been replicated to some nodes, and will eventually
be replicated to all nodes with the gossip protocol.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-response1 }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-response1 }
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-response2 }
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-response1 }
+
+
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-response2 }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-response2 }
You will always see your own writes. For example if you send two `Update` messages
changing the value of the same `key`, the `modify` function of the second message will
@@ -105,7 +122,11 @@ does not care about, but is included in the reply messages. This is a convenient
way to pass contextual information (e.g. original sender) without having to use `ask`
or maintain local correlation data structures.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-request-context }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-request-context }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-request-context }
### Get
@@ -113,7 +134,7 @@ or maintain local correlation data structures.
To retrieve the current value of a data you send `Replicator.Get` message to the
`Replicator`. You supply a consistency level which has the following meaning:
- * `readLocal` the value will only be read from the local replica
+ * @scala[`ReadLocal`]@java[`readLocal`] the value will only be read from the local replica
* `ReadFrom(n)` the value will be read and merged from `n` replicas,
including the local replica
* `ReadMajority` the value will be read and merged from a majority of replicas, i.e.
@@ -124,16 +145,29 @@ at least **N/2 + 1** replicas, where N is the number of nodes in the cluster
Note that `ReadMajority` has a `minCap` parameter that is useful to specify to achieve better safety for small clusters.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get }
As reply of the `Get` a `Replicator.GetSuccess` is sent to the sender of the
`Get` if the value was successfully retrieved according to the supplied consistency
level within the supplied timeout. Otherwise a `Replicator.GetFailure` is sent.
If the key does not exist the reply will be `Replicator.NotFound`.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-response1 }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-response1 }
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-response2 }
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-response1 }
+
+
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-response2 }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-response2 }
You will always read your own writes. For example if you send a `Update` message
followed by a `Get` of the same `key` the `Get` will retrieve the change that was
@@ -145,17 +179,21 @@ In the `Get` message you can pass an optional request context in the same way as
`Update` message, described above. For example the original sender can be passed and replied
to after receiving and transforming `GetSuccess`.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-request-context }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-request-context }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-request-context }
### Consistency
The consistency level that is supplied in the [Update](#replicator-update) and [Get](#replicator-get)
specifies per request how many replicas that must respond successfully to a write and read request.
-For low latency reads you use `ReadLocal` with the risk of retrieving stale data, i.e. updates
+For low latency reads you use @scala[`ReadLocal`]@java[`readLocal`] with the risk of retrieving stale data, i.e. updates
from other nodes might not be visible yet.
-When using `writeLocal` the update is only written to the local replica and then disseminated
+When using @scala[`WriteLocal`]@java[`writeLocal`] the update is only written to the local replica and then disseminated
in the background with the gossip protocol, which can take few seconds to spread to all nodes.
`WriteAll` and `ReadAll` is the strongest consistency level, but also the slowest and with
@@ -195,13 +233,27 @@ is useful to specify to achieve better safety for small clusters. It means that
size is smaller than the majority size it will use the `minCap` number of nodes but at most
the total size of the cluster.
-Here is an example of using `writeMajority` and `readMajority`:
+Here is an example of using `WriteMajority` and `ReadMajority`:
-@@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #read-write-majority }
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #read-write-majority }
-@@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #get-cart }
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #read-write-majority }
-@@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #add-item }
+
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #get-cart }
+
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #get-cart }
+
+
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #add-item }
+
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #add-item }
In some rare cases, when performing an `Update` it is needed to first try to fetch latest data from
other nodes. That can be done by first sending a `Get` with `ReadMajority` and then continue with
@@ -213,11 +265,15 @@ performed (hence the name observed-removed set).
The following example illustrates how to do that:
-@@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #remove-item }
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #remove-item }
+
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #remove-item }
@@@ warning
-*Caveat:* Even if you use `writeMajority` and `readMajority` there is small risk that you may
+*Caveat:* Even if you use `WriteMajority` and `ReadMajority` there is small risk that you may
read stale data if the cluster membership has changed between the `Update` and the `Get`.
For example, in cluster of 5 nodes when you `Update` and that change is written to 3 nodes:
n1, n2, n3. Then 2 more nodes are added and a `Get` request is reading from 4 nodes, which
@@ -238,7 +294,11 @@ immediately.
The subscriber is automatically removed if the subscriber is terminated. A subscriber can
also be deregistered with the `Replicator.Unsubscribe` message.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #subscribe }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #subscribe }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #subscribe }
### Delete
@@ -253,9 +313,17 @@ to all nodes.
A deleted key cannot be reused again, but it is still recommended to delete unused
data entries because that reduces the replication overhead when new nodes join the cluster.
Subsequent `Delete`, `Update` and `Get` requests will be replied with `Replicator.DataDeleted`.
-Subscribers will receive `Replicator.DataDeleted`.
+Subscribers will receive `Replicator.Deleted`.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #delete }
+In the *Delete* message you can pass an optional request context in the same way as for the
+*Update* message, described above. For example the original sender can be passed and replied
+to after receiving and transforming *DeleteSuccess*.
+
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #delete }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #delete }
@@@ warning
@@ -296,11 +364,11 @@ akka.cluster.distributed-data.delta-crdt.enabled=off
## Data Types
-The data types must be convergent (stateful) CRDTs and implement the `ReplicatedData` trait,
+The data types must be convergent (stateful) CRDTs and implement the @scala[`ReplicatedData` trait]@java[`AbstractReplicatedData` interface],
i.e. they provide a monotonic merge function and the state changes always converge.
-You can use your own custom `AbstractReplicatedData` or `AbstractDeltaReplicatedData` types,
-and several types are provided by this package, such as:
+You can use your own custom @scala[`ReplicatedData` or `DeltaReplicatedData`]@java[`AbstractReplicatedData` or `AbstractDeltaReplicatedData`] types, and several types are provided
+by this package, such as:
* Counters: `GCounter`, `PNCounter`
* Sets: `GSet`, `ORSet`
@@ -321,7 +389,11 @@ It is tracking the increments (P) separate from the decrements (N). Both P and N
as two internal `GCounter`. Merge is handled by merging the internal P and N counters.
The value of the counter is the value of the P counter minus the value of the N counter.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #pncounter }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #pncounter }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #pncounter }
`GCounter` and `PNCounter` have support for [delta-CRDT](#delta-crdt) and don't need causal
delivery of deltas.
@@ -331,7 +403,11 @@ When the counters are placed in a `PNCounterMap` as opposed to placing them as s
values they are guaranteed to be replicated together as one unit, which is sometimes necessary for
related data.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #pncountermap }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #pncountermap }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #pncountermap }
### Sets
@@ -339,7 +415,11 @@ If you only need to add elements to a set and not remove elements the `GSet` (gr
the data type to use. The elements can be any type of values that can be serialized.
Merge is simply the union of the two sets.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #gset }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #gset }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #gset }
`GSet` has support for [delta-CRDT](#delta-crdt) and it doesn't require causal delivery of deltas.
@@ -352,7 +432,11 @@ The version for the node that added the element is also tracked for each element
called "birth dot". The version vector and the dots are used by the `merge` function to
track causality of the operations and resolve concurrent updates.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #orset }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #orset }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #orset }
`ORSet` has support for [delta-CRDT](#delta-crdt) and it requires causal delivery of deltas.
@@ -374,8 +458,8 @@ such as the following specialized maps.
`ORMultiMap` (observed-remove multi-map) is a multi-map implementation that wraps an
`ORMap` with an `ORSet` for the map's value.
-`PNCounterMap` (positive negative counter map) is a map of named counters. It is a specialized
-`ORMap` with `PNCounter` values.
+`PNCounterMap` (positive negative counter map) is a map of named counters (where the name can be of any type).
+It is a specialized `ORMap` with `PNCounter` values.
`LWWMap` (last writer wins map) is a specialized `ORMap` with `LWWRegister` (last writer wins register)
values.
@@ -396,7 +480,11 @@ There is ongoing work aimed at removing necessity of creation of the aforementio
that despite having the same Scala type, `ORMultiMap.emptyWithValueDeltas` is not compatible with 'vanilla' `ORMultiMap`,
because of different replication mechanism.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #ormultimap }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #ormultimap }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #ormultimap }
When a data entry is changed the full state of that entry is replicated to other nodes, i.e.
when you update a map the whole map is replicated. Therefore, instead of using one `ORMap`
@@ -415,7 +503,11 @@ in the below section about `LWWRegister`.
`Flag` is a data type for a boolean value that is initialized to `false` and can be switched
to `true`. Thereafter it cannot be changed. `true` wins over `false` in merge.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #flag }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #flag }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #flag }
`LWWRegister` (last writer wins register) can hold any (serializable) value.
@@ -426,13 +518,21 @@ value is not important for concurrent updates occurring within the clock skew.
Merge takes the register updated by the node with lowest address (`UniqueAddress` is ordered)
if the timestamps are exactly the same.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #lwwregister }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #lwwregister }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #lwwregister }
Instead of using timestamps based on `System.currentTimeMillis()` time it is possible to
use a timestamp value based on something else, for example an increasing version number
from a database record that is used for optimistic concurrency control.
-@@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #lwwregister-custom-clock }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #lwwregister-custom-clock }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #lwwregister-custom-clock }
For first-write-wins semantics you can use the `LWWRegister#reverseClock` instead of the
`LWWRegister#defaultClock`.
@@ -447,7 +547,7 @@ changing and writing the value with `WriteMajority` (or more).
### Custom Data Type
You can rather easily implement your own data types. The only requirement is that it implements
-the `mergeData` function of the `AbstractReplicatedData` class.
+the @scala[`merge`]@java[`mergeData`] function of the @scala[`ReplicatedData`]@java[`AbstractReplicatedData`] trait.
A nice property of stateful CRDTs is that they typically compose nicely, i.e. you can combine several
smaller data types to build richer data structures. For example, the `PNCounter` is composed of
@@ -457,11 +557,15 @@ Here is s simple implementation of a custom `TwoPhaseSet` that is using two inte
to keep track of addition and removals. A `TwoPhaseSet` is a set where an element may be added and
removed, but never added again thereafter.
-@@snip [TwoPhaseSet.java]($code$/java/jdocs/ddata/TwoPhaseSet.java) { #twophaseset }
+Scala
+: @@snip [TwoPhaseSet.scala]($code$/scala/docs/ddata/TwoPhaseSet.scala) { #twophaseset }
+
+Java
+: @@snip [TwoPhaseSet.java]($code$/java/jdocs/ddata/TwoPhaseSet.java) { #twophaseset }
Data types should be immutable, i.e. "modifying" methods should return a new instance.
-Implement the additional methods of `AbstractDeltaReplicatedData` if it has support for delta-CRDT replication.
+Implement the additional methods of @scala[`DeltaReplicatedData`]@java[`AbstractDeltaReplicatedData`] if it has support for delta-CRDT replication.
#### Serialization
@@ -481,19 +585,31 @@ This is a protobuf representation of the above `TwoPhaseSet`:
The serializer for the `TwoPhaseSet`:
-@@snip [TwoPhaseSetSerializer.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializer.java) { #serializer }
+Scala
+: @@snip [TwoPhaseSetSerializer.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer.scala) { #serializer }
+
+Java
+: @@snip [TwoPhaseSetSerializer.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializer.java) { #serializer }
Note that the elements of the sets are sorted so the SHA-1 digests are the same
for the same elements.
You register the serializer in configuration:
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #japi-serializer-config }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #serializer-config }
+
+Java
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #japi-serializer-config }
Using compression can sometimes be a good idea to reduce the data size. Gzip compression is
-provided by the `akka.cluster.ddata.protobuf.SerializationSupport` trait:
+provided by the @scala[`akka.cluster.ddata.protobuf.SerializationSupport` trait]@java[`akka.cluster.ddata.protobuf.AbstractSerializationSupport` interface]:
-@@snip [TwoPhaseSetSerializerWithCompression.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializerWithCompression.java) { #compression }
+Scala
+: @@snip [TwoPhaseSetSerializer.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer.scala) { #compression }
+
+Java
+: @@snip [TwoPhaseSetSerializerWithCompression.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializerWithCompression.java) { #compression }
The two embedded `GSet` can be serialized as illustrated above, but in general when composing
new data types from the existing built in types it is better to make use of the existing
@@ -506,7 +622,11 @@ by the `SerializationSupport` trait to serialize and deserialize the `GSet` inst
works with any type that has a registered Akka serializer. This is how such an serializer would
look like for the `TwoPhaseSet`:
-@@snip [TwoPhaseSetSerializer2.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializer2.java) { #serializer }
+Scala
+: @@snip [TwoPhaseSetSerializer2.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer2.scala) { #serializer }
+
+Java
+: @@snip [TwoPhaseSetSerializer2.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializer2.java) { #serializer }
### Durable Storage
@@ -532,23 +652,36 @@ All entries can be made durable by specifying:
akka.cluster.distributed-data.durable.keys = ["*"]
```
-[LMDB](https://github.com/lmdbjava/lmdbjava/) is the default storage implementation. It is
+@scala[[LMDB](https://symas.com/products/lightning-memory-mapped-database/)]@java[[LMDB](https://github.com/lmdbjava/lmdbjava/)] is the default storage implementation. It is
possible to replace that with another implementation by implementing the actor protocol described in
`akka.cluster.ddata.DurableStore` and defining the `akka.cluster.distributed-data.durable.store-actor-class`
property for the new implementation.
The location of the files for the data is configured with:
-```
+Scala
+: ```
# Directory of LMDB file. There are two options:
# 1. A relative or absolute path to a directory that ends with 'ddata'
# the full name of the directory will contain name of the ActorSystem
# and its remote port.
# 2. Otherwise the path is used as is, as a relative or absolute path to
# a directory.
-akka.cluster.distributed-data.lmdb.dir = "ddata"
+akka.cluster.distributed-data.durable.lmdb.dir = "ddata"
```
+Java
+: ```
+# Directory of LMDB file. There are two options:
+# 1. A relative or absolute path to a directory that ends with 'ddata'
+# the full name of the directory will contain name of the ActorSystem
+# and its remote port.
+# 2. Otherwise the path is used as is, as a relative or absolute path to
+# a directory.
+akka.cluster.distributed-data.durable.lmdb.dir = "ddata"
+```
+
+
When running in production you may want to configure the directory to a specific
path (alt 2), since the default directory contains the remote port of the
actor system to make the name unique. If using a dynamically assigned
@@ -595,7 +728,7 @@ API documentation of the `Replicator` for details.
## Samples
Several interesting samples are included and described in the
-tutorial named @extref[Akka Distributed Data Samples with Java](ecs:akka-samples-distributed-data-java) (@extref[source code](samples:akka-sample-distributed-data-java))
+tutorial named @scala[@extref[Akka Distributed Data Samples with Scala](ecs:akka-samples-distributed-data-scala) (@extref[source code](samples:akka-sample-distributed-data-scala))]@java[@extref[Akka Distributed Data Samples with Java](ecs:akka-samples-distributed-data-java) (@extref[source code](samples:akka-sample-distributed-data-java))]
* Low Latency Voting Service
* Highly Available Shopping Cart
@@ -662,4 +795,4 @@ Maven
The `DistributedData` extension can be configured with the following properties:
-@@snip [reference.conf]($akka$/akka-distributed-data/src/main/resources/reference.conf) { #distributed-data }
\ No newline at end of file
+@@snip [reference.conf]($akka$/akka-distributed-data/src/main/resources/reference.conf) { #distributed-data }
diff --git a/akka-docs/src/main/paradox/scala/distributed-data.md b/akka-docs/src/main/paradox/scala/distributed-data.md
index 3c22efbdfb..8192e14b0d 100644
--- a/akka-docs/src/main/paradox/scala/distributed-data.md
+++ b/akka-docs/src/main/paradox/scala/distributed-data.md
@@ -41,7 +41,11 @@ Below is an example of an actor that schedules tick messages to itself and for e
adds or removes elements from a `ORSet` (observed-remove set). It also subscribes to
changes of this.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #data-bot }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #data-bot }
+
+Java
+: @@snip [DataBot.java]($code$/java/jdocs/ddata/DataBot.java) { #data-bot }
### Update
@@ -55,7 +59,7 @@ will then be replicated according to the given consistency level.
The `modify` function is called by the `Replicator` actor and must therefore be a pure
function that only uses the data parameter and stable fields from enclosing scope. It must
-for example not access `sender()` reference of an enclosing actor.
+for example not access the sender (@scala[`sender()`]@java[`getSender()`]) reference of an enclosing actor.
`Update`
is intended to only be sent from an actor running in same local
@@ -66,7 +70,7 @@ for example not access `sender()` reference of an enclosing actor.
You supply a write consistency level which has the following meaning:
- * `WriteLocal` the value will immediately only be written to the local replica,
+ * @scala[`WriteLocal`]@java[`writeLocal`] the value will immediately only be written to the local replica,
and later disseminated with gossip
* `WriteTo(n)` the value will immediately be written to at least `n` replicas,
including the local replica
@@ -83,7 +87,11 @@ are prefered over unreachable nodes.
Note that `WriteMajority` has a `minCap` parameter that is useful to specify to achieve better safety for small clusters.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update }
As reply of the `Update` a `Replicator.UpdateSuccess` is sent to the sender of the
`Update` if the value was successfully replicated according to the supplied consistency
@@ -92,9 +100,18 @@ sent back. Note that a `Replicator.UpdateTimeout` reply does not mean that the u
or was rolled back. It may still have been replicated to some nodes, and will eventually
be replicated to all nodes with the gossip protocol.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-response1 }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-response1 }
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-response2 }
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-response1 }
+
+
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-response2 }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-response2 }
You will always see your own writes. For example if you send two `Update` messages
changing the value of the same `key`, the `modify` function of the second message will
@@ -105,7 +122,11 @@ does not care about, but is included in the reply messages. This is a convenient
way to pass contextual information (e.g. original sender) without having to use `ask`
or maintain local correlation data structures.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-request-context }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #update-request-context }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #update-request-context }
### Get
@@ -113,7 +134,7 @@ or maintain local correlation data structures.
To retrieve the current value of a data you send `Replicator.Get` message to the
`Replicator`. You supply a consistency level which has the following meaning:
- * `ReadLocal` the value will only be read from the local replica
+ * @scala[`ReadLocal`]@java[`readLocal`] the value will only be read from the local replica
* `ReadFrom(n)` the value will be read and merged from `n` replicas,
including the local replica
* `ReadMajority` the value will be read and merged from a majority of replicas, i.e.
@@ -124,16 +145,29 @@ at least **N/2 + 1** replicas, where N is the number of nodes in the cluster
Note that `ReadMajority` has a `minCap` parameter that is useful to specify to achieve better safety for small clusters.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get }
As reply of the `Get` a `Replicator.GetSuccess` is sent to the sender of the
`Get` if the value was successfully retrieved according to the supplied consistency
level within the supplied timeout. Otherwise a `Replicator.GetFailure` is sent.
If the key does not exist the reply will be `Replicator.NotFound`.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-response1 }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-response1 }
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-response2 }
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-response1 }
+
+
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-response2 }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-response2 }
You will always read your own writes. For example if you send a `Update` message
followed by a `Get` of the same `key` the `Get` will retrieve the change that was
@@ -145,17 +179,21 @@ In the `Get` message you can pass an optional request context in the same way as
`Update` message, described above. For example the original sender can be passed and replied
to after receiving and transforming `GetSuccess`.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-request-context }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #get-request-context }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #get-request-context }
### Consistency
The consistency level that is supplied in the [Update](#replicator-update) and [Get](#replicator-get)
specifies per request how many replicas that must respond successfully to a write and read request.
-For low latency reads you use `ReadLocal` with the risk of retrieving stale data, i.e. updates
+For low latency reads you use @scala[`ReadLocal`]@java[`readLocal`] with the risk of retrieving stale data, i.e. updates
from other nodes might not be visible yet.
-When using `WriteLocal` the update is only written to the local replica and then disseminated
+When using @scala[`WriteLocal`]@java[`writeLocal`] the update is only written to the local replica and then disseminated
in the background with the gossip protocol, which can take few seconds to spread to all nodes.
`WriteAll` and `ReadAll` is the strongest consistency level, but also the slowest and with
@@ -197,11 +235,25 @@ the total size of the cluster.
Here is an example of using `WriteMajority` and `ReadMajority`:
-@@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #read-write-majority }
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #read-write-majority }
-@@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #get-cart }
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #read-write-majority }
-@@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #add-item }
+
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #get-cart }
+
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #get-cart }
+
+
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #add-item }
+
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #add-item }
In some rare cases, when performing an `Update` it is needed to first try to fetch latest data from
other nodes. That can be done by first sending a `Get` with `ReadMajority` and then continue with
@@ -213,7 +265,11 @@ performed (hence the name observed-removed set).
The following example illustrates how to do that:
-@@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #remove-item }
+Scala
+: @@snip [ShoppingCart.scala]($code$/scala/docs/ddata/ShoppingCart.scala) { #remove-item }
+
+Java
+: @@snip [ShoppingCart.java]($code$/java/jdocs/ddata/ShoppingCart.java) { #remove-item }
@@@ warning
@@ -238,7 +294,11 @@ immediately.
The subscriber is automatically removed if the subscriber is terminated. A subscriber can
also be deregistered with the `Replicator.Unsubscribe` message.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #subscribe }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #subscribe }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #subscribe }
### Delete
@@ -259,7 +319,11 @@ In the *Delete* message you can pass an optional request context in the same way
*Update* message, described above. For example the original sender can be passed and replied
to after receiving and transforming *DeleteSuccess*.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #delete }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #delete }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #delete }
@@@ warning
@@ -300,10 +364,10 @@ akka.cluster.distributed-data.delta-crdt.enabled=off
## Data Types
-The data types must be convergent (stateful) CRDTs and implement the `ReplicatedData` trait,
+The data types must be convergent (stateful) CRDTs and implement the @scala[`ReplicatedData` trait]@java[`AbstractReplicatedData` interface],
i.e. they provide a monotonic merge function and the state changes always converge.
-You can use your own custom `ReplicatedData` or `DeltaReplicatedData` types, and several types are provided
+You can use your own custom @scala[`ReplicatedData` or `DeltaReplicatedData`]@java[`AbstractReplicatedData` or `AbstractDeltaReplicatedData`] types, and several types are provided
by this package, such as:
* Counters: `GCounter`, `PNCounter`
@@ -325,7 +389,11 @@ It is tracking the increments (P) separate from the decrements (N). Both P and N
as two internal `GCounter`. Merge is handled by merging the internal P and N counters.
The value of the counter is the value of the P counter minus the value of the N counter.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #pncounter }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #pncounter }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #pncounter }
`GCounter` and `PNCounter` have support for [delta-CRDT](#delta-crdt) and don't need causal
delivery of deltas.
@@ -335,7 +403,11 @@ When the counters are placed in a `PNCounterMap` as opposed to placing them as s
values they are guaranteed to be replicated together as one unit, which is sometimes necessary for
related data.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #pncountermap }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #pncountermap }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #pncountermap }
### Sets
@@ -343,7 +415,11 @@ If you only need to add elements to a set and not remove elements the `GSet` (gr
the data type to use. The elements can be any type of values that can be serialized.
Merge is simply the union of the two sets.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #gset }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #gset }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #gset }
`GSet` has support for [delta-CRDT](#delta-crdt) and it doesn't require causal delivery of deltas.
@@ -356,7 +432,11 @@ The version for the node that added the element is also tracked for each element
called "birth dot". The version vector and the dots are used by the `merge` function to
track causality of the operations and resolve concurrent updates.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #orset }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #orset }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #orset }
`ORSet` has support for [delta-CRDT](#delta-crdt) and it requires causal delivery of deltas.
@@ -400,7 +480,11 @@ There is ongoing work aimed at removing necessity of creation of the aforementio
that despite having the same Scala type, `ORMultiMap.emptyWithValueDeltas` is not compatible with 'vanilla' `ORMultiMap`,
because of different replication mechanism.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #ormultimap }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #ormultimap }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #ormultimap }
When a data entry is changed the full state of that entry is replicated to other nodes, i.e.
when you update a map the whole map is replicated. Therefore, instead of using one `ORMap`
@@ -419,7 +503,11 @@ in the below section about `LWWRegister`.
`Flag` is a data type for a boolean value that is initialized to `false` and can be switched
to `true`. Thereafter it cannot be changed. `true` wins over `false` in merge.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #flag }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #flag }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #flag }
`LWWRegister` (last writer wins register) can hold any (serializable) value.
@@ -430,13 +518,21 @@ value is not important for concurrent updates occurring within the clock skew.
Merge takes the register updated by the node with lowest address (`UniqueAddress` is ordered)
if the timestamps are exactly the same.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #lwwregister }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #lwwregister }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #lwwregister }
Instead of using timestamps based on `System.currentTimeMillis()` time it is possible to
use a timestamp value based on something else, for example an increasing version number
from a database record that is used for optimistic concurrency control.
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #lwwregister-custom-clock }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #lwwregister-custom-clock }
+
+Java
+: @@snip [DistributedDataDocTest.java]($code$/java/jdocs/ddata/DistributedDataDocTest.java) { #lwwregister-custom-clock }
For first-write-wins semantics you can use the `LWWRegister#reverseClock` instead of the
`LWWRegister#defaultClock`.
@@ -451,7 +547,7 @@ changing and writing the value with `WriteMajority` (or more).
### Custom Data Type
You can rather easily implement your own data types. The only requirement is that it implements
-the `merge` function of the `ReplicatedData` trait.
+the @scala[`merge`]@java[`mergeData`] function of the @scala[`ReplicatedData`]@java[`AbstractReplicatedData`] trait.
A nice property of stateful CRDTs is that they typically compose nicely, i.e. you can combine several
smaller data types to build richer data structures. For example, the `PNCounter` is composed of
@@ -461,11 +557,15 @@ Here is s simple implementation of a custom `TwoPhaseSet` that is using two inte
to keep track of addition and removals. A `TwoPhaseSet` is a set where an element may be added and
removed, but never added again thereafter.
-@@snip [TwoPhaseSet.scala]($code$/scala/docs/ddata/TwoPhaseSet.scala) { #twophaseset }
+Scala
+: @@snip [TwoPhaseSet.scala]($code$/scala/docs/ddata/TwoPhaseSet.scala) { #twophaseset }
+
+Java
+: @@snip [TwoPhaseSet.java]($code$/java/jdocs/ddata/TwoPhaseSet.java) { #twophaseset }
Data types should be immutable, i.e. "modifying" methods should return a new instance.
-Implement the additional methods of `DeltaReplicatedData` if it has support for delta-CRDT replication.
+Implement the additional methods of @scala[`DeltaReplicatedData`]@java[`AbstractDeltaReplicatedData`] if it has support for delta-CRDT replication.
#### Serialization
@@ -485,19 +585,31 @@ This is a protobuf representation of the above `TwoPhaseSet`:
The serializer for the `TwoPhaseSet`:
-@@snip [TwoPhaseSetSerializer.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer.scala) { #serializer }
+Scala
+: @@snip [TwoPhaseSetSerializer.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer.scala) { #serializer }
+
+Java
+: @@snip [TwoPhaseSetSerializer.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializer.java) { #serializer }
Note that the elements of the sets are sorted so the SHA-1 digests are the same
for the same elements.
You register the serializer in configuration:
-@@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #serializer-config }
+Scala
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #serializer-config }
+
+Java
+: @@snip [DistributedDataDocSpec.scala]($code$/scala/docs/ddata/DistributedDataDocSpec.scala) { #japi-serializer-config }
Using compression can sometimes be a good idea to reduce the data size. Gzip compression is
-provided by the `akka.cluster.ddata.protobuf.SerializationSupport` trait:
+provided by the @scala[`akka.cluster.ddata.protobuf.SerializationSupport` trait]@java[`akka.cluster.ddata.protobuf.AbstractSerializationSupport` interface]:
-@@snip [TwoPhaseSetSerializer.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer.scala) { #compression }
+Scala
+: @@snip [TwoPhaseSetSerializer.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer.scala) { #compression }
+
+Java
+: @@snip [TwoPhaseSetSerializerWithCompression.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializerWithCompression.java) { #compression }
The two embedded `GSet` can be serialized as illustrated above, but in general when composing
new data types from the existing built in types it is better to make use of the existing
@@ -510,7 +622,11 @@ by the `SerializationSupport` trait to serialize and deserialize the `GSet` inst
works with any type that has a registered Akka serializer. This is how such an serializer would
look like for the `TwoPhaseSet`:
-@@snip [TwoPhaseSetSerializer2.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer2.scala) { #serializer }
+Scala
+: @@snip [TwoPhaseSetSerializer2.scala]($code$/scala/docs/ddata/protobuf/TwoPhaseSetSerializer2.scala) { #serializer }
+
+Java
+: @@snip [TwoPhaseSetSerializer2.java]($code$/java/jdocs/ddata/protobuf/TwoPhaseSetSerializer2.java) { #serializer }
### Durable Storage
@@ -536,14 +652,15 @@ All entries can be made durable by specifying:
akka.cluster.distributed-data.durable.keys = ["*"]
```
-[LMDB](https://symas.com/products/lightning-memory-mapped-database/) is the default storage implementation. It is
+@scala[[LMDB](https://symas.com/products/lightning-memory-mapped-database/)]@java[[LMDB](https://github.com/lmdbjava/lmdbjava/)] is the default storage implementation. It is
possible to replace that with another implementation by implementing the actor protocol described in
`akka.cluster.ddata.DurableStore` and defining the `akka.cluster.distributed-data.durable.store-actor-class`
property for the new implementation.
The location of the files for the data is configured with:
-```
+Scala
+: ```
# Directory of LMDB file. There are two options:
# 1. A relative or absolute path to a directory that ends with 'ddata'
# the full name of the directory will contain name of the ActorSystem
@@ -553,6 +670,18 @@ The location of the files for the data is configured with:
akka.cluster.distributed-data.durable.lmdb.dir = "ddata"
```
+Java
+: ```
+# Directory of LMDB file. There are two options:
+# 1. A relative or absolute path to a directory that ends with 'ddata'
+# the full name of the directory will contain name of the ActorSystem
+# and its remote port.
+# 2. Otherwise the path is used as is, as a relative or absolute path to
+# a directory.
+akka.cluster.distributed-data.durable.lmdb.dir = "ddata"
+```
+
+
When running in production you may want to configure the directory to a specific
path (alt 2), since the default directory contains the remote port of the
actor system to make the name unique. If using a dynamically assigned
@@ -599,7 +728,7 @@ API documentation of the `Replicator` for details.
## Samples
Several interesting samples are included and described in the
-tutorial named @extref[Akka Distributed Data Samples with Scala](ecs:akka-samples-distributed-data-scala) (@extref[source code](samples:akka-sample-distributed-data-scala))
+tutorial named @scala[@extref[Akka Distributed Data Samples with Scala](ecs:akka-samples-distributed-data-scala) (@extref[source code](samples:akka-sample-distributed-data-scala))]@java[@extref[Akka Distributed Data Samples with Java](ecs:akka-samples-distributed-data-java) (@extref[source code](samples:akka-sample-distributed-data-java))]
* Low Latency Voting Service
* Highly Available Shopping Cart
@@ -650,7 +779,7 @@ sbt
"com.typesafe.akka" %% "akka-distributed-data" % "$akka.version$"
```
@@@
-
+
Maven
: @@@vars
```
@@ -666,4 +795,4 @@ Maven
The `DistributedData` extension can be configured with the following properties:
-@@snip [reference.conf]($akka$/akka-distributed-data/src/main/resources/reference.conf) { #distributed-data }
\ No newline at end of file
+@@snip [reference.conf]($akka$/akka-distributed-data/src/main/resources/reference.conf) { #distributed-data }