=str #16103 Flattened javadsl class structure - no adapters, no ops
This commit is contained in:
parent
7053295de9
commit
9dd3685a2a
16 changed files with 862 additions and 952 deletions
|
|
@ -3,57 +3,201 @@
|
|||
*/
|
||||
package akka.stream.javadsl
|
||||
|
||||
import akka.stream._
|
||||
|
||||
import java.util
|
||||
import java.util.concurrent.Callable
|
||||
|
||||
import akka.japi.Util
|
||||
import akka.stream.javadsl.japi.{ Predicate, Function2, Creator, Function }
|
||||
import akka.stream.scaladsl2._
|
||||
import org.reactivestreams.{ Subscriber, Publisher }
|
||||
import akka.stream._
|
||||
import org.reactivestreams.Publisher
|
||||
import org.reactivestreams.Subscriber
|
||||
import scaladsl2.FlowMaterializer
|
||||
|
||||
import scala.annotation.unchecked.uncheckedVariance
|
||||
import scala.collection.immutable
|
||||
import scala.collection.JavaConverters._
|
||||
import scala.collection.immutable.Seq
|
||||
import scala.concurrent.Future
|
||||
import scala.concurrent.duration.FiniteDuration
|
||||
|
||||
import scala.language.higherKinds
|
||||
import scala.language.implicitConversions
|
||||
|
||||
/** Java API */
|
||||
object Source {
|
||||
|
||||
import scaladsl2.JavaConverters._
|
||||
|
||||
/** Adapt [[scaladsl2.Source]] for use within JavaDSL */
|
||||
def adapt[O](source: scaladsl2.Source[O]): Source[O] =
|
||||
new Source(source)
|
||||
|
||||
/** Adapt [[scaladsl2.SourcePipe]] for use within JavaDSL */
|
||||
def adapt[O](source: scaladsl2.SourcePipe[O]): Source[O] =
|
||||
new Source(source)
|
||||
|
||||
/**
|
||||
* Create a `Source` with no elements, i.e. an empty stream that is completed immediately
|
||||
* for every connected `Sink`.
|
||||
*/
|
||||
def empty[O](): Source[O] =
|
||||
new Source(scaladsl2.Source.empty())
|
||||
|
||||
/**
|
||||
* Helper to create [[Source]] from `Publisher`.
|
||||
*
|
||||
* Construct a transformation starting with given publisher. The transformation steps
|
||||
* are executed by a series of [[org.reactivestreams.Processor]] instances
|
||||
* that mediate the flow of elements downstream and the propagation of
|
||||
* back-pressure upstream.
|
||||
*/
|
||||
def from[O](publisher: Publisher[O]): javadsl.Source[O] =
|
||||
new Source(scaladsl2.Source.apply(publisher))
|
||||
|
||||
/**
|
||||
* Helper to create [[Source]] from `Iterator`.
|
||||
* Example usage:
|
||||
*
|
||||
* {{{
|
||||
* List<Integer> data = new ArrayList<Integer>();
|
||||
* data.add(1);
|
||||
* data.add(2);
|
||||
* data.add(3);
|
||||
* Source.from(data.iterator());
|
||||
* }}}
|
||||
*
|
||||
* Start a new `Source` from the given Iterator. The produced stream of elements
|
||||
* will continue until the iterator runs empty or fails during evaluation of
|
||||
* the `next()` method. Elements are pulled out of the iterator
|
||||
* in accordance with the demand coming from the downstream transformation
|
||||
* steps.
|
||||
*/
|
||||
def from[O](iterator: java.util.Iterator[O]): javadsl.Source[O] =
|
||||
new Source(scaladsl2.Source(iterator.asScala))
|
||||
|
||||
/**
|
||||
* Helper to create [[Source]] from `Iterable`.
|
||||
* Example usage:
|
||||
* {{{
|
||||
* List<Integer> data = new ArrayList<Integer>();
|
||||
* data.add(1);
|
||||
* data.add(2);
|
||||
* data.add(3);
|
||||
* Source.fom(data);
|
||||
* }}}
|
||||
*
|
||||
* Starts a new `Source` from the given `Iterable`. This is like starting from an
|
||||
* Iterator, but every Subscriber directly attached to the Publisher of this
|
||||
* stream will see an individual flow of elements (always starting from the
|
||||
* beginning) regardless of when they subscribed.
|
||||
*/
|
||||
def from[O](iterable: java.lang.Iterable[O]): javadsl.Source[O] =
|
||||
new Source(scaladsl2.Source(akka.stream.javadsl.japi.Util.immutableIterable(iterable)))
|
||||
|
||||
/**
|
||||
* Define the sequence of elements to be produced by the given closure.
|
||||
* The stream ends normally when evaluation of the closure returns a `None`.
|
||||
* The stream ends exceptionally when an exception is thrown from the closure.
|
||||
*/
|
||||
def from[O](f: japi.Creator[akka.japi.Option[O]]): javadsl.Source[O] =
|
||||
new Source(scaladsl2.Source(() ⇒ f.create().asScala))
|
||||
|
||||
/**
|
||||
* Start a new `Source` from the given `Future`. The stream will consist of
|
||||
* one element when the `Future` is completed with a successful value, which
|
||||
* may happen before or after materializing the `Flow`.
|
||||
* The stream terminates with an error if the `Future` is completed with a failure.
|
||||
*/
|
||||
def from[O](future: Future[O]): javadsl.Source[O] =
|
||||
new Source(scaladsl2.Source(future))
|
||||
|
||||
/**
|
||||
* Elements are produced from the tick closure periodically with the specified interval.
|
||||
* The tick element will be delivered to downstream consumers that has requested any elements.
|
||||
* If a consumer has not requested any elements at the point in time when the tick
|
||||
* element is produced it will not receive that tick element later. It will
|
||||
* receive new tick elements as soon as it has requested more elements.
|
||||
*/
|
||||
def from[O](initialDelay: FiniteDuration, interval: FiniteDuration, tick: Callable[O]): javadsl.Source[O] =
|
||||
new Source(scaladsl2.Source(initialDelay, interval, () ⇒ tick.call()))
|
||||
|
||||
/**
|
||||
* Creates a `Source` by using a [[FlowGraphBuilder]] from this [[PartialFlowGraph]] on a block that expects
|
||||
* a [[FlowGraphBuilder]] and returns the `UndefinedSink`.
|
||||
*/
|
||||
def from[T](graph: PartialFlowGraph, block: japi.Function[FlowGraphBuilder, UndefinedSink[T]]): Source[T] =
|
||||
new Source(scaladsl2.Source(graph.asScala)(x ⇒ block.apply(x.asJava).asScala))
|
||||
|
||||
/**
|
||||
* Create a `Source` with one element.
|
||||
* Every connected `Sink` of this stream will see an individual stream consisting of one element.
|
||||
*/
|
||||
def singleton[T](element: T): Source[T] =
|
||||
new Source(scaladsl2.Source.singleton(element))
|
||||
|
||||
/**
|
||||
* Create a `Source` that immediately ends the stream with the `cause` error to every connected `Sink`.
|
||||
*/
|
||||
def failed[T](cause: Throwable): Source[T] =
|
||||
new Source(scaladsl2.Source.failed(cause))
|
||||
|
||||
/**
|
||||
* Creates a `Source` that is materialized as a [[org.reactivestreams.Subscriber]]
|
||||
*/
|
||||
def subscriber[T](): KeyedSource[Subscriber[T], T] =
|
||||
new KeyedSource(scaladsl2.Source.subscriber)
|
||||
|
||||
/**
|
||||
* Concatenates two sources so that the first element
|
||||
* emitted by the second source is emitted after the last element of the first
|
||||
* source.
|
||||
*/
|
||||
def concat[T](first: Source[T], second: Source[T]): Source[T] =
|
||||
new KeyedSource(scaladsl2.Source.concat(first.asScala, second.asScala))
|
||||
}
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* A `Source` is a set of stream processing steps that has one open output and an attached input.
|
||||
* Can be used as a `Publisher`
|
||||
*/
|
||||
abstract class Source[+Out] extends javadsl.SourceOps[Out] {
|
||||
class Source[+Out](delegate: scaladsl2.Source[Out]) {
|
||||
import akka.stream.scaladsl2.JavaConverters._
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
/** Converts this Java DSL element to it's Scala DSL counterpart. */
|
||||
def asScala: scaladsl2.Source[Out] = delegate
|
||||
|
||||
// CONNECT //
|
||||
|
||||
/**
|
||||
* Transform this source by appending the given processing stages.
|
||||
*/
|
||||
def connect[T](flow: javadsl.Flow[Out, T]): javadsl.Source[T]
|
||||
def connect[T](flow: javadsl.Flow[Out, T]): javadsl.Source[T] =
|
||||
new Source(delegate.connect(flow.asScala))
|
||||
|
||||
/**
|
||||
* Connect this source to a sink, concatenating the processing steps of both.
|
||||
*/
|
||||
def connect(sink: javadsl.Sink[Out]): javadsl.RunnableFlow
|
||||
def connect(sink: javadsl.Sink[Out]): javadsl.RunnableFlow =
|
||||
new RunnableFlowAdapter(delegate.connect(sink.asScala))
|
||||
|
||||
// RUN WITH //
|
||||
|
||||
/**
|
||||
* Connect this `Source` to a `Sink` and run it. The returned value is the materialized value
|
||||
* of the `Sink`, e.g. the `Publisher` of a [[akka.stream.scaladsl2.PublisherSink]].
|
||||
* Connect this `Source` to a `KeyedSink` and run it.
|
||||
* The returned value is the materialized value of the `Sink`, e.g. the `Publisher` of a `Sink.publisher()`.
|
||||
*
|
||||
* @tparam S materialized type of the given Sink
|
||||
*/
|
||||
def runWith[S](sink: KeyedSink[Out, S], materializer: FlowMaterializer): S
|
||||
def runWith[S](sink: KeyedSink[Out, S], materializer: FlowMaterializer): S =
|
||||
asScala.runWith(sink.asScala)(materializer).asInstanceOf[S]
|
||||
|
||||
/**
|
||||
* Connect this `Source` to a `Sink` and run it. The returned value is the materialized value
|
||||
* of the `Sink`, e.g. the `Publisher` of a [[akka.stream.scaladsl2.PublisherSink]].
|
||||
* Connect this `Source` to a `Sink` and run it.
|
||||
* The returned value is the materialized value of the `Sink`, e.g. the `Publisher` of a `Sink.publisher()`.
|
||||
*/
|
||||
def runWith(sink: SimpleSink[Out], materializer: FlowMaterializer): Unit
|
||||
def runWith(sink: Sink[Out], materializer: FlowMaterializer): Unit =
|
||||
delegate.connect(sink.asScala).run()(materializer)
|
||||
|
||||
// OPS //
|
||||
|
||||
/**
|
||||
* Shortcut for running this `Source` with a fold function.
|
||||
|
|
@ -63,14 +207,16 @@ abstract class Source[+Out] extends javadsl.SourceOps[Out] {
|
|||
* function evaluation when the input stream ends, or completed with `Failure`
|
||||
* if there is an error is signaled in the stream.
|
||||
*/
|
||||
def fold[U](zero: U, f: japi.Function2[U, Out, U], materializer: FlowMaterializer): Future[U]
|
||||
def fold[U](zero: U, f: japi.Function2[U, Out, U], materializer: FlowMaterializer): Future[U] =
|
||||
runWith(Sink.fold(zero, f), materializer)
|
||||
|
||||
/**
|
||||
* Concatenates a second source so that the first element
|
||||
* emitted by that source is emitted after the last element of this
|
||||
* source.
|
||||
*/
|
||||
def concat[Out2 >: Out](second: Source[Out2]): Source[Out2]
|
||||
def concat[Out2 >: Out](second: Source[Out2]): Source[Out2] =
|
||||
delegate.concat(second.asScala).asJava
|
||||
|
||||
/**
|
||||
* Shortcut for running this `Source` with a foreach procedure. The given procedure is invoked
|
||||
|
|
@ -79,207 +225,270 @@ abstract class Source[+Out] extends javadsl.SourceOps[Out] {
|
|||
* normal end of the stream, or completed with `Failure` if there is an error is signaled in
|
||||
* the stream.
|
||||
*/
|
||||
def foreach(f: japi.Procedure[Out], materializer: FlowMaterializer): Future[Unit]
|
||||
}
|
||||
|
||||
object Source {
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Adapt [[scaladsl2.Source]] for use within JavaDSL
|
||||
*/
|
||||
def adapt[O](source: scaladsl2.Source[O]): Source[O] = SourceAdapter(source)
|
||||
|
||||
/**
|
||||
* Java API
|
||||
* Adapt [[scaladsl2.SourcePipe]] for use within JavaDSL
|
||||
*/
|
||||
def adapt[O](source: scaladsl2.SourcePipe[O]): Source[O] = SourceAdapter(source)
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Helper to create [[Source]] from `Publisher`.
|
||||
*
|
||||
* Construct a transformation starting with given publisher. The transformation steps
|
||||
* are executed by a series of [[org.reactivestreams.Processor]] instances
|
||||
* that mediate the flow of elements downstream and the propagation of
|
||||
* back-pressure upstream.
|
||||
*/
|
||||
def from[O](publisher: Publisher[O]): javadsl.Source[O] =
|
||||
SourceAdapter(scaladsl2.Source.apply(publisher))
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Helper to create [[Source]] from `Iterator`.
|
||||
* Example usage: `Source(Seq(1,2,3).iterator)`
|
||||
*
|
||||
* Start a new `Source` from the given Iterator. The produced stream of elements
|
||||
* will continue until the iterator runs empty or fails during evaluation of
|
||||
* the `next()` method. Elements are pulled out of the iterator
|
||||
* in accordance with the demand coming from the downstream transformation
|
||||
* steps.
|
||||
*/
|
||||
def from[O](iterator: java.util.Iterator[O]): javadsl.Source[O] =
|
||||
SourceAdapter(scaladsl2.Source(iterator.asScala))
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Helper to create [[Source]] from `Iterable`.
|
||||
* Example usage: `Source.from(Seq(1,2,3))`
|
||||
*
|
||||
* Starts a new `Source` from the given `Iterable`. This is like starting from an
|
||||
* Iterator, but every Subscriber directly attached to the Publisher of this
|
||||
* stream will see an individual flow of elements (always starting from the
|
||||
* beginning) regardless of when they subscribed.
|
||||
*/
|
||||
def from[O](iterable: java.lang.Iterable[O]): javadsl.Source[O] =
|
||||
SourceAdapter(scaladsl2.Source(akka.stream.javadsl.japi.Util.immutableIterable(iterable)))
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Define the sequence of elements to be produced by the given closure.
|
||||
* The stream ends normally when evaluation of the closure returns a `None`.
|
||||
* The stream ends exceptionally when an exception is thrown from the closure.
|
||||
*/
|
||||
def from[O](f: japi.Creator[akka.japi.Option[O]]): javadsl.Source[O] =
|
||||
SourceAdapter(scaladsl2.Source(() ⇒ f.create().asScala))
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Start a new `Source` from the given `Future`. The stream will consist of
|
||||
* one element when the `Future` is completed with a successful value, which
|
||||
* may happen before or after materializing the `Flow`.
|
||||
* The stream terminates with an error if the `Future` is completed with a failure.
|
||||
*/
|
||||
def from[O](future: Future[O]): javadsl.Source[O] =
|
||||
SourceAdapter(scaladsl2.Source(future))
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* Elements are produced from the tick closure periodically with the specified interval.
|
||||
* The tick element will be delivered to downstream consumers that has requested any elements.
|
||||
* If a consumer has not requested any elements at the point in time when the tick
|
||||
* element is produced it will not receive that tick element later. It will
|
||||
* receive new tick elements as soon as it has requested more elements.
|
||||
*/
|
||||
def from[O](initialDelay: FiniteDuration, interval: FiniteDuration, tick: Callable[O]): javadsl.Source[O] =
|
||||
SourceAdapter(scaladsl2.Source(initialDelay, interval, () ⇒ tick.call()))
|
||||
}
|
||||
|
||||
/** INTERNAL API */
|
||||
private[akka] object SourceAdapter {
|
||||
|
||||
def apply[O](source: scaladsl2.Source[O]): javadsl.Source[O] =
|
||||
new SourceAdapter[O] { def delegate = source }
|
||||
}
|
||||
|
||||
/** INTERNAL API */
|
||||
private[akka] abstract class SourceAdapter[+Out] extends Source[Out] {
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
import akka.stream.scaladsl2.JavaConverters._
|
||||
|
||||
protected def delegate: scaladsl2.Source[Out]
|
||||
|
||||
/** Converts this Source to it's Scala DSL counterpart */
|
||||
def asScala: scaladsl2.Source[Out] = delegate
|
||||
|
||||
// SOURCE //
|
||||
|
||||
override def connect[T](flow: javadsl.Flow[Out, T]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.connect(flow.asScala))
|
||||
|
||||
override def connect(sink: javadsl.Sink[Out]): javadsl.RunnableFlow =
|
||||
new RunnableFlowAdapter(delegate.connect(sink.asScala))
|
||||
|
||||
override def runWith[D](sink: KeyedSink[Out, D], materializer: FlowMaterializer): D =
|
||||
asScala.runWith(sink.asScala)(materializer).asInstanceOf[D]
|
||||
|
||||
override def runWith(sink: SimpleSink[Out], materializer: FlowMaterializer): Unit =
|
||||
delegate.connect(sink.asScala).run()(materializer)
|
||||
|
||||
override def fold[U](zero: U, f: japi.Function2[U, Out, U], materializer: FlowMaterializer): Future[U] =
|
||||
runWith(Sink.fold(zero, f), materializer)
|
||||
|
||||
override def concat[Out2 >: Out](second: javadsl.Source[Out2]): javadsl.Source[Out2] =
|
||||
delegate.concat(second.asScala).asJava
|
||||
|
||||
override def foreach(f: japi.Procedure[Out], materializer: FlowMaterializer): Future[Unit] =
|
||||
def foreach(f: japi.Procedure[Out], materializer: FlowMaterializer): Future[Unit] =
|
||||
runWith(Sink.foreach(f), materializer)
|
||||
|
||||
// COMMON OPS //
|
||||
|
||||
override def map[T](f: Function[Out, T]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.map(f.apply))
|
||||
/**
|
||||
* Transform this stream by applying the given function to each of the elements
|
||||
* as they pass through this processing step.
|
||||
*/
|
||||
def map[T](f: japi.Function[Out, T]): javadsl.Source[T] =
|
||||
new Source(delegate.map(f.apply))
|
||||
|
||||
override def mapConcat[T](f: Function[Out, java.util.List[T]]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.mapConcat(elem ⇒ Util.immutableSeq(f.apply(elem))))
|
||||
/**
|
||||
* Transform each input element into a sequence of output elements that is
|
||||
* then flattened into the output stream.
|
||||
*/
|
||||
def mapConcat[T](f: japi.Function[Out, java.util.List[T]]): javadsl.Source[T] =
|
||||
new Source(delegate.mapConcat(elem ⇒ Util.immutableSeq(f.apply(elem))))
|
||||
|
||||
override def mapAsync[T](f: Function[Out, Future[T]]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.mapAsync(f.apply))
|
||||
/**
|
||||
* Transform this stream by applying the given function to each of the elements
|
||||
* as they pass through this processing step. The function returns a `Future` of the
|
||||
* element that will be emitted downstream. As many futures as requested elements by
|
||||
* downstream may run in parallel and may complete in any order, but the elements that
|
||||
* are emitted downstream are in the same order as from upstream.
|
||||
*
|
||||
* @see [[#mapAsyncUnordered]]
|
||||
*/
|
||||
def mapAsync[T](f: japi.Function[Out, Future[T]]): javadsl.Source[T] =
|
||||
new Source(delegate.mapAsync(f.apply))
|
||||
|
||||
override def mapAsyncUnordered[T](f: Function[Out, Future[T]]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.mapAsyncUnordered(f.apply))
|
||||
/**
|
||||
* Transform this stream by applying the given function to each of the elements
|
||||
* as they pass through this processing step. The function returns a `Future` of the
|
||||
* element that will be emitted downstream. As many futures as requested elements by
|
||||
* downstream may run in parallel and each processed element will be emitted dowstream
|
||||
* as soon as it is ready, i.e. it is possible that the elements are not emitted downstream
|
||||
* in the same order as from upstream.
|
||||
*
|
||||
* @see [[#mapAsync]]
|
||||
*/
|
||||
def mapAsyncUnordered[T](f: japi.Function[Out, Future[T]]): javadsl.Source[T] =
|
||||
new Source(delegate.mapAsyncUnordered(f.apply))
|
||||
|
||||
override def filter(p: Predicate[Out]): javadsl.Source[Out] =
|
||||
SourceAdapter(delegate.filter(p.test))
|
||||
/**
|
||||
* Only pass on those elements that satisfy the given predicate.
|
||||
*/
|
||||
def filter(p: japi.Predicate[Out]): javadsl.Source[Out] =
|
||||
new Source(delegate.filter(p.test))
|
||||
|
||||
override def collect[T](pf: PartialFunction[Out, T]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.collect(pf))
|
||||
/**
|
||||
* Transform this stream by applying the given partial function to each of the elements
|
||||
* on which the function is defined as they pass through this processing step.
|
||||
* Non-matching elements are filtered out.
|
||||
*/
|
||||
def collect[T](pf: PartialFunction[Out, T]): javadsl.Source[T] =
|
||||
new Source(delegate.collect(pf))
|
||||
|
||||
override def grouped(n: Int): javadsl.Source[java.util.List[Out @uncheckedVariance]] =
|
||||
SourceAdapter(delegate.grouped(n).map(_.asJava))
|
||||
/**
|
||||
* Chunk up this stream into groups of the given size, with the last group
|
||||
* possibly smaller than requested due to end-of-stream.
|
||||
*
|
||||
* @param n must be positive, otherwise [[IllegalArgumentException]] is thrown.
|
||||
*/
|
||||
def grouped(n: Int): javadsl.Source[java.util.List[Out @uncheckedVariance]] =
|
||||
new Source(delegate.grouped(n).map(_.asJava))
|
||||
|
||||
override def groupedWithin(n: Int, d: FiniteDuration): javadsl.Source[java.util.List[Out @uncheckedVariance]] =
|
||||
SourceAdapter(delegate.groupedWithin(n, d).map(_.asJava)) // FIXME optimize to one step
|
||||
/**
|
||||
* Chunk up this stream into groups of elements received within a time window,
|
||||
* or limited by the given number of elements, whatever happens first.
|
||||
* Empty groups will not be emitted if no elements are received from upstream.
|
||||
* The last group before end-of-stream will contain the buffered elements
|
||||
* since the previously emitted group.
|
||||
*
|
||||
* @param n must be positive, and `d` must be greater than 0 seconds, otherwise [[IllegalArgumentException]] is thrown.
|
||||
*/
|
||||
def groupedWithin(n: Int, d: FiniteDuration): javadsl.Source[java.util.List[Out @uncheckedVariance]] =
|
||||
new Source(delegate.groupedWithin(n, d).map(_.asJava)) // FIXME optimize to one step
|
||||
|
||||
override def drop(n: Int): javadsl.Source[Out] =
|
||||
SourceAdapter(delegate.drop(n))
|
||||
/**
|
||||
* Discard the given number of elements at the beginning of the stream.
|
||||
* No elements will be dropped if `n` is zero or negative.
|
||||
*/
|
||||
def drop(n: Int): javadsl.Source[Out] =
|
||||
new Source(delegate.drop(n))
|
||||
|
||||
override def dropWithin(d: FiniteDuration): javadsl.Source[Out] =
|
||||
SourceAdapter(delegate.dropWithin(d))
|
||||
/**
|
||||
* Discard the elements received within the given duration at beginning of the stream.
|
||||
*/
|
||||
def dropWithin(d: FiniteDuration): javadsl.Source[Out] =
|
||||
new Source(delegate.dropWithin(d))
|
||||
|
||||
override def take(n: Int): javadsl.Source[Out] =
|
||||
SourceAdapter(delegate.take(n))
|
||||
/**
|
||||
* Terminate processing (and cancel the upstream publisher) after the given
|
||||
* number of elements. Due to input buffering some elements may have been
|
||||
* requested from upstream publishers that will then not be processed downstream
|
||||
* of this step.
|
||||
*
|
||||
* @param n if `n` is zero or negative the stream will be completed without producing any elements.
|
||||
*/
|
||||
def take(n: Int): javadsl.Source[Out] =
|
||||
new Source(delegate.take(n))
|
||||
|
||||
override def takeWithin(d: FiniteDuration): javadsl.Source[Out] =
|
||||
SourceAdapter(delegate.takeWithin(d))
|
||||
/**
|
||||
* Terminate processing (and cancel the upstream publisher) after the given
|
||||
* duration. Due to input buffering some elements may have been
|
||||
* requested from upstream publishers that will then not be processed downstream
|
||||
* of this step.
|
||||
*
|
||||
* Note that this can be combined with [[#take]] to limit the number of elements
|
||||
* within the duration.
|
||||
*/
|
||||
def takeWithin(d: FiniteDuration): javadsl.Source[Out] =
|
||||
new Source(delegate.takeWithin(d))
|
||||
|
||||
override def conflate[S](seed: Function[Out, S], aggregate: Function2[S, Out, S]): javadsl.Source[S] =
|
||||
SourceAdapter(delegate.conflate(seed.apply, aggregate.apply))
|
||||
/**
|
||||
* Allows a faster upstream to progress independently of a slower subscriber by conflating elements into a summary
|
||||
* until the subscriber is ready to accept them. For example a conflate step might average incoming numbers if the
|
||||
* upstream publisher is faster.
|
||||
*
|
||||
* This element only rolls up elements if the upstream is faster, but if the downstream is faster it will not
|
||||
* duplicate elements.
|
||||
*
|
||||
* @param seed Provides the first state for a conflated value using the first unconsumed element as a start
|
||||
* @param aggregate Takes the currently aggregated value and the current pending element to produce a new aggregate
|
||||
*/
|
||||
def conflate[S](seed: japi.Function[Out, S], aggregate: japi.Function2[S, Out, S]): javadsl.Source[S] =
|
||||
new Source(delegate.conflate(seed.apply, aggregate.apply))
|
||||
|
||||
override def expand[S, U](seed: Function[Out, S], extrapolate: Function[S, akka.japi.Pair[U, S]]): javadsl.Source[U] =
|
||||
SourceAdapter(delegate.expand(seed.apply, (s: S) ⇒ {
|
||||
/**
|
||||
* Allows a faster downstream to progress independently of a slower publisher by extrapolating elements from an older
|
||||
* element until new element comes from the upstream. For example an expand step might repeat the last element for
|
||||
* the subscriber until it receives an update from upstream.
|
||||
*
|
||||
* This element will never "drop" upstream elements as all elements go through at least one extrapolation step.
|
||||
* This means that if the upstream is actually faster than the upstream it will be backpressured by the downstream
|
||||
* subscriber.
|
||||
*
|
||||
* @param seed Provides the first state for extrapolation using the first unconsumed element
|
||||
* @param extrapolate Takes the current extrapolation state to produce an output element and the next extrapolation
|
||||
* state.
|
||||
*/
|
||||
def expand[S, U](seed: japi.Function[Out, S], extrapolate: japi.Function[S, akka.japi.Pair[U, S]]): javadsl.Source[U] =
|
||||
new Source(delegate.expand(seed.apply, (s: S) ⇒ {
|
||||
val p = extrapolate.apply(s)
|
||||
(p.first, p.second)
|
||||
}))
|
||||
|
||||
override def buffer(size: Int, overflowStrategy: OverflowStrategy): javadsl.Source[Out] =
|
||||
SourceAdapter(delegate.buffer(size, overflowStrategy))
|
||||
/**
|
||||
* Adds a fixed size buffer in the flow that allows to store elements from a faster upstream until it becomes full.
|
||||
* Depending on the defined [[OverflowStrategy]] it might drop elements or backpressure the upstream if there is no
|
||||
* space available
|
||||
*
|
||||
* @param size The size of the buffer in element count
|
||||
* @param overflowStrategy Strategy that is used when incoming elements cannot fit inside the buffer
|
||||
*/
|
||||
def buffer(size: Int, overflowStrategy: OverflowStrategy): javadsl.Source[Out] =
|
||||
new Source(delegate.buffer(size, overflowStrategy))
|
||||
|
||||
override def transform[T](name: String, mkTransformer: japi.Creator[Transformer[Out, T]]): javadsl.Source[T] =
|
||||
SourceAdapter(delegate.transform(name, () ⇒ mkTransformer.create()))
|
||||
/**
|
||||
* Generic transformation of a stream: for each element the [[akka.stream.Transformer#onNext]]
|
||||
* function is invoked, expecting a (possibly empty) sequence of output elements
|
||||
* to be produced.
|
||||
* After handing off the elements produced from one input element to the downstream
|
||||
* subscribers, the [[akka.stream.Transformer#isComplete]] predicate determines whether to end
|
||||
* stream processing at this point; in that case the upstream subscription is
|
||||
* canceled. Before signaling normal completion to the downstream subscribers,
|
||||
* the [[akka.stream.Transformer#onComplete]] function is invoked to produce a (possibly empty)
|
||||
* sequence of elements in response to the end-of-stream event.
|
||||
*
|
||||
* [[akka.stream.Transformer#onError]] is called when failure is signaled from upstream.
|
||||
*
|
||||
* After normal completion or error the [[akka.stream.Transformer#cleanup]] function is called.
|
||||
*
|
||||
* It is possible to keep state in the concrete [[akka.stream.Transformer]] instance with
|
||||
* ordinary instance variables. The [[akka.stream.Transformer]] is executed by an actor and
|
||||
* therefore you do not have to add any additional thread safety or memory
|
||||
* visibility constructs to access the state from the callback methods.
|
||||
*
|
||||
* Note that you can use [[#timerTransform]] if you need support for scheduled events in the transformer.
|
||||
*/
|
||||
def transform[U](name: String, mkTransformer: japi.Creator[Transformer[Out, U]]): javadsl.Source[U] =
|
||||
new Source(delegate.transform(name, () ⇒ mkTransformer.create()))
|
||||
|
||||
override def timerTransform[U](name: String, mkTransformer: Creator[TimerTransformer[Out, U]]): javadsl.Source[U] =
|
||||
SourceAdapter(delegate.timerTransform(name, () ⇒ mkTransformer.create()))
|
||||
/**
|
||||
* Transformation of a stream, with additional support for scheduled events.
|
||||
*
|
||||
* For each element the [[akka.stream.Transformer#onNext]]
|
||||
* function is invoked, expecting a (possibly empty) sequence of output elements
|
||||
* to be produced.
|
||||
* After handing off the elements produced from one input element to the downstream
|
||||
* subscribers, the [[akka.stream.Transformer#isComplete]] predicate determines whether to end
|
||||
* stream processing at this point; in that case the upstream subscription is
|
||||
* canceled. Before signaling normal completion to the downstream subscribers,
|
||||
* the [[akka.stream.Transformer#onComplete]] function is invoked to produce a (possibly empty)
|
||||
* sequence of elements in response to the end-of-stream event.
|
||||
*
|
||||
* [[akka.stream.Transformer#onError]] is called when failure is signaled from upstream.
|
||||
*
|
||||
* After normal completion or error the [[akka.stream.Transformer#cleanup]] function is called.
|
||||
*
|
||||
* It is possible to keep state in the concrete [[akka.stream.Transformer]] instance with
|
||||
* ordinary instance variables. The [[akka.stream.Transformer]] is executed by an actor and
|
||||
* therefore you do not have to add any additional thread safety or memory
|
||||
* visibility constructs to access the state from the callback methods.
|
||||
*
|
||||
* Note that you can use [[#transform]] if you just need to transform elements time plays no role in the transformation.
|
||||
*/
|
||||
def timerTransform[U](name: String, mkTransformer: japi.Creator[TimerTransformer[Out, U]]): javadsl.Source[U] =
|
||||
new Source(delegate.timerTransform(name, () ⇒ mkTransformer.create()))
|
||||
|
||||
override def prefixAndTail(n: Int): javadsl.Source[akka.japi.Pair[java.util.List[Out @uncheckedVariance], javadsl.Source[Out @uncheckedVariance]]] =
|
||||
SourceAdapter(delegate.prefixAndTail(n).map { case (taken, tail) ⇒ akka.japi.Pair(taken.asJava, tail.asJava) })
|
||||
/**
|
||||
* Takes up to `n` elements from the stream and returns a pair containing a strict sequence of the taken element
|
||||
* and a stream representing the remaining elements. If ''n'' is zero or negative, then this will return a pair
|
||||
* of an empty collection and a stream containing the whole upstream unchanged.
|
||||
*/
|
||||
def prefixAndTail(n: Int): javadsl.Source[akka.japi.Pair[java.util.List[Out @uncheckedVariance], javadsl.Source[Out @uncheckedVariance]]] =
|
||||
new Source(delegate.prefixAndTail(n).map { case (taken, tail) ⇒ akka.japi.Pair(taken.asJava, tail.asJava) })
|
||||
|
||||
override def groupBy[K](f: japi.Function[Out, K]): javadsl.Source[akka.japi.Pair[K, javadsl.Source[Out @uncheckedVariance]]] =
|
||||
SourceAdapter(delegate.groupBy(f.apply).map { case (k, p) ⇒ akka.japi.Pair(k, p.asJava) }) // FIXME optimize to one step
|
||||
/**
|
||||
* This operation demultiplexes the incoming stream into separate output
|
||||
* streams, one for each element key. The key is computed for each element
|
||||
* using the given function. When a new key is encountered for the first time
|
||||
* it is emitted to the downstream subscriber together with a fresh
|
||||
* flow that will eventually produce all the elements of the substream
|
||||
* for that key. Not consuming the elements from the created streams will
|
||||
* stop this processor from processing more elements, therefore you must take
|
||||
* care to unblock (or cancel) all of the produced streams even if you want
|
||||
* to consume only one of them.
|
||||
*/
|
||||
def groupBy[K](f: japi.Function[Out, K]): javadsl.Source[akka.japi.Pair[K, javadsl.Source[Out @uncheckedVariance]]] =
|
||||
new Source(delegate.groupBy(f.apply).map { case (k, p) ⇒ akka.japi.Pair(k, p.asJava) }) // FIXME optimize to one step
|
||||
|
||||
override def splitWhen(p: japi.Predicate[Out]): javadsl.Source[javadsl.Source[Out]] =
|
||||
SourceAdapter(delegate.splitWhen(p.test).map(_.asJava))
|
||||
/**
|
||||
* This operation applies the given predicate to all incoming elements and
|
||||
* emits them to a stream of output streams, always beginning a new one with
|
||||
* the current element if the given predicate returns true for it. This means
|
||||
* that for the following series of predicate values, three substreams will
|
||||
* be produced with lengths 1, 2, and 3:
|
||||
*
|
||||
* {{{
|
||||
* false, // element goes into first substream
|
||||
* true, false, // elements go into second substream
|
||||
* true, false, false // elements go into third substream
|
||||
* }}}
|
||||
*/
|
||||
def splitWhen(p: japi.Predicate[Out]): javadsl.Source[javadsl.Source[Out]] =
|
||||
new Source(delegate.splitWhen(p.test).map(_.asJava))
|
||||
|
||||
override def flatten[U](strategy: FlattenStrategy[Out, U]): javadsl.Source[U] =
|
||||
SourceAdapter(delegate.flatten(strategy))
|
||||
/**
|
||||
* Transforms a stream of streams into a contiguous stream of elements using the provided flattening strategy.
|
||||
* This operation can be used on a stream of element type [[Source]].
|
||||
*/
|
||||
def flatten[U](strategy: akka.stream.FlattenStrategy[Out, U]): javadsl.Source[U] =
|
||||
new Source(delegate.flatten(strategy))
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Java API
|
||||
*
|
||||
* A `Source` that will create an object during materialization that the user will need
|
||||
* to retrieve in order to access aspects of this source (could be a Subscriber, a Future/Promise, etc.).
|
||||
*/
|
||||
final class KeyedSource[+Out, T](delegate: scaladsl2.Source[Out]) extends Source[Out](delegate) {
|
||||
override def asScala: scaladsl2.KeyedActorFlowSource[Out] = super.asScala.asInstanceOf[scaladsl2.KeyedActorFlowSource[Out]]
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue