Merge with master and adding copyright notices on the osgi stuff
This commit is contained in:
commit
6fb06ee46b
29 changed files with 2608 additions and 128 deletions
84
akka-docs/scala/code/akka/docs/io/BinaryCoding.scala
Normal file
84
akka-docs/scala/code/akka/docs/io/BinaryCoding.scala
Normal file
|
|
@ -0,0 +1,84 @@
|
|||
/**
|
||||
* Copyright (C) 2012 Typesafe Inc. <http://www.typesafe.com>
|
||||
*/
|
||||
package akka.docs.io
|
||||
|
||||
//#imports
|
||||
import akka.actor._
|
||||
import akka.util.{ ByteString, ByteStringBuilder, ByteIterator }
|
||||
//#imports
|
||||
|
||||
abstract class BinaryDecoding {
|
||||
//#decoding
|
||||
implicit val byteOrder = java.nio.ByteOrder.BIG_ENDIAN
|
||||
|
||||
val FrameDecoder = for {
|
||||
frameLenBytes ← IO.take(4)
|
||||
frameLen = frameLenBytes.iterator.getInt
|
||||
frame ← IO.take(frameLen)
|
||||
} yield {
|
||||
val in = frame.iterator
|
||||
|
||||
val n = in.getInt
|
||||
val m = in.getInt
|
||||
|
||||
val a = Array.newBuilder[Short]
|
||||
val b = Array.newBuilder[Long]
|
||||
|
||||
for (i ← 1 to n) {
|
||||
a += in.getShort
|
||||
b += in.getInt
|
||||
}
|
||||
|
||||
val data = Array.ofDim[Double](m)
|
||||
in.getDoubles(data)
|
||||
|
||||
(a.result, b.result, data)
|
||||
}
|
||||
|
||||
//#decoding
|
||||
}
|
||||
|
||||
abstract class RestToSeq {
|
||||
implicit val byteOrder = java.nio.ByteOrder.BIG_ENDIAN
|
||||
val bytes: ByteString
|
||||
val in = bytes.iterator
|
||||
|
||||
//#rest-to-seq
|
||||
val n = in.getInt
|
||||
val m = in.getInt
|
||||
// ... in.get...
|
||||
val rest: ByteString = in.toSeq
|
||||
//#rest-to-seq
|
||||
}
|
||||
|
||||
abstract class BinaryEncoding {
|
||||
//#encoding
|
||||
implicit val byteOrder = java.nio.ByteOrder.BIG_ENDIAN
|
||||
|
||||
val a: Array[Short]
|
||||
val b: Array[Long]
|
||||
val data: Array[Double]
|
||||
|
||||
val frameBuilder = ByteString.newBuilder
|
||||
|
||||
val n = a.length
|
||||
val m = data.length
|
||||
|
||||
frameBuilder.putInt(n)
|
||||
frameBuilder.putInt(m)
|
||||
|
||||
for (i ← 0 to n - 1) {
|
||||
frameBuilder.putShort(a(i))
|
||||
frameBuilder.putLong(b(i))
|
||||
}
|
||||
frameBuilder.putDoubles(data)
|
||||
val frame = frameBuilder.result()
|
||||
//#encoding
|
||||
|
||||
//#sending
|
||||
val socket: IO.SocketHandle
|
||||
socket.write(ByteString.newBuilder.putInt(frame.length).result)
|
||||
socket.write(frame)
|
||||
//#sending
|
||||
}
|
||||
|
|
@ -17,10 +17,62 @@ ByteString
|
|||
|
||||
A primary goal of Akka's IO module is to only communicate between actors with immutable objects. When dealing with network IO on the jvm ``Array[Byte]`` and ``ByteBuffer`` are commonly used to represent collections of ``Byte``\s, but they are mutable. Scala's collection library also lacks a suitably efficient immutable collection for ``Byte``\s. Being able to safely and efficiently move ``Byte``\s around is very important for this IO module, so ``ByteString`` was developed.
|
||||
|
||||
``ByteString`` is a `Rope-like <http://en.wikipedia.org/wiki/Rope_(computer_science)>`_ data structure that is immutable and efficient. When 2 ``ByteString``\s are concatenated together they are both stored within the resulting ``ByteString`` instead of copying both to a new ``Array``. Operations such as ``drop`` and ``take`` return ``ByteString``\s that still reference the original ``Array``, but just change the offset and length that is visible. Great care has also been taken to make sure that the internal ``Array`` cannot be modified. Whenever a potentially unsafe ``Array`` is used to create a new ``ByteString`` a defensive copy is created.
|
||||
``ByteString`` is a `Rope-like <http://en.wikipedia.org/wiki/Rope_(computer_science)>`_ data structure that is immutable and efficient. When 2 ``ByteString``\s are concatenated together they are both stored within the resulting ``ByteString`` instead of copying both to a new ``Array``. Operations such as ``drop`` and ``take`` return ``ByteString``\s that still reference the original ``Array``, but just change the offset and length that is visible. Great care has also been taken to make sure that the internal ``Array`` cannot be modified. Whenever a potentially unsafe ``Array`` is used to create a new ``ByteString`` a defensive copy is created. If you require a ``ByteString`` that only blocks a much memory as necessary for it's content, use the ``compact`` method to get a ``CompactByteString`` instance. If the ``ByteString`` represented only a slice of the original array, this will result in copying all bytes in that slice.
|
||||
|
||||
``ByteString`` inherits all methods from ``IndexedSeq``, and it also has some new ones. For more information, look up the ``akka.util.ByteString`` class and it's companion object in the ScalaDoc.
|
||||
|
||||
``ByteString`` also comes with it's own optimized builder and iterator classes ``ByteStringBuilder`` and ``ByteIterator`` which provides special features in addition to the standard builder / iterator methods:
|
||||
|
||||
Compatibility with java.io
|
||||
..........................
|
||||
|
||||
A ``ByteStringBuilder`` can be wrapped in a `java.io.OutputStream` via the ``asOutputStream`` method. Likewise, ``ByteIterator`` can we wrapped in a ``java.io.InputStream`` via ``asInputStream``. Using these, ``akka.io`` applications can integrate legacy code based on ``java.io`` streams.
|
||||
|
||||
Encoding and decoding of binary data
|
||||
....................................
|
||||
|
||||
``ByteStringBuilder`` and ``ByteIterator`` support encoding and decoding of binary data. As an example, consider a stream of binary data frames with the following format:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
frameLen: Int
|
||||
n: Int
|
||||
m: Int
|
||||
n times {
|
||||
a: Short
|
||||
b: Long
|
||||
}
|
||||
data: m times Double
|
||||
|
||||
In this example, the data is to be stored in arrays of ``a``, ``b`` and ``data``.
|
||||
|
||||
Decoding of such frames can be efficiently implemented in the following fashion:
|
||||
|
||||
.. includecode:: code/akka/docs/io/BinaryCoding.scala
|
||||
:include: decoding
|
||||
|
||||
This implementation naturally follows the example data format. In a true Scala application, one might, of course, want use specialized immutable Short/Long/Double containers instead of mutable Arrays.
|
||||
|
||||
After extracting data from a ``ByteIterator``, the remaining content can also be turned back into a ``ByteString`` using the ``toSeq`` method
|
||||
|
||||
.. includecode:: code/akka/docs/io/BinaryCoding.scala
|
||||
:include: rest-to-seq
|
||||
|
||||
with no copying from bytes to rest involved. In general, conversions from ByteString to ByteIterator and vice versa are O(1) for non-chunked ``ByteString``s and (at worst) O(nChunks) for chunked ByteStrings.
|
||||
|
||||
|
||||
Encoding of data also is very natural, using ``ByteStringBuilder``
|
||||
|
||||
.. includecode:: code/akka/docs/io/BinaryCoding.scala
|
||||
:include: encoding
|
||||
|
||||
|
||||
The encoded data then can be sent over socket (see ``IOManager``):
|
||||
|
||||
.. includecode:: code/akka/docs/io/BinaryCoding.scala
|
||||
:include: sending
|
||||
|
||||
|
||||
IO.Handle
|
||||
^^^^^^^^^
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue