A primary goal of Akka's IO support is to only communicate between actors with immutable objects. When dealing with network IO on the jvm ``Array[Byte]`` and ``ByteBuffer`` are commonly used to represent collections of ``Byte``\s, but they are mutable. Scala's collection library also lacks a suitably efficient immutable collection for ``Byte``\s. Being able to safely and efficiently move ``Byte``\s around is very important for this IO support, so ``ByteString`` was developed.
``ByteString`` is a `Rope-like <http://en.wikipedia.org/wiki/Rope_(computer_science)>`_ data structure that is immutable and efficient. When 2 ``ByteString``\s are concatenated together they are both stored within the resulting ``ByteString`` instead of copying both to a new ``Array``. Operations such as ``drop`` and ``take`` return ``ByteString``\s that still reference the original ``Array``, but just change the offset and length that is visible. Great care has also been taken to make sure that the internal ``Array`` cannot be modified. Whenever a potentially unsafe ``Array`` is used to create a new ``ByteString`` a defensive copy is created. If you require a ``ByteString`` that only blocks a much memory as necessary for it's content, use the ``compact`` method to get a ``CompactByteString`` instance. If the ``ByteString`` represented only a slice of the original array, this will result in copying all bytes in that slice.
``ByteString`` inherits all methods from ``IndexedSeq``, and it also has some new ones. For more information, look up the ``akka.util.ByteString`` class and it's companion object in the ScalaDoc.
``ByteString`` also comes with it's own optimized builder and iterator classes ``ByteStringBuilder`` and ``ByteIterator`` which provides special features in addition to the standard builder / iterator methods:
Compatibility with java.io
..........................
A ``ByteStringBuilder`` can be wrapped in a `java.io.OutputStream` via the ``asOutputStream`` method. Likewise, ``ByteIterator`` can we wrapped in a ``java.io.InputStream`` via ``asInputStream``. Using these, ``akka.io`` applications can integrate legacy code based on ``java.io`` streams.
Encoding and decoding of binary data
....................................
``ByteStringBuilder`` and ``ByteIterator`` support encoding and decoding of binary data. As an example, consider a stream of binary data frames with the following format:
..code-block:: text
frameLen: Int
n: Int
m: Int
n times {
a: Short
b: Long
}
data: m times Double
In this example, the data is to be stored in arrays of ``a``, ``b`` and ``data``.
Decoding of such frames can be efficiently implemented in the following fashion:
This implementation naturally follows the example data format. In a true Scala application, one might, of course, want use specialized immutable Short/Long/Double containers instead of mutable Arrays.
with no copying from bytes to rest involved. In general, conversions from ByteString to ByteIterator and vice versa are O(1) for non-chunked ByteStrings and (at worst) O(nChunks) for chunked ByteStrings.