pekko/akka-stream/src/main/scala/akka/stream/impl/StreamLayout.scala

932 lines
40 KiB
Scala
Raw Normal View History

/**
* Copyright (C) 2015-2016 Lightbend Inc. <http://www.lightbend.com>
*/
package akka.stream.impl
2016-02-22 20:18:15 +01:00
import java.util.concurrent.atomic.{ AtomicReference }
2015-12-14 17:02:00 +01:00
import java.{ util ju }
import akka.NotUsed
import akka.stream.impl.MaterializerSession.MaterializationPanic
import akka.stream.impl.StreamLayout.Module
import akka.stream.scaladsl.Keep
import akka.stream._
import org.reactivestreams.{ Processor, Subscription, Publisher, Subscriber }
import scala.util.control.{ NoStackTrace, NonFatal }
import akka.event.Logging.simpleName
import scala.annotation.tailrec
import java.util.concurrent.atomic.AtomicLong
2015-12-14 17:02:00 +01:00
import scala.collection.JavaConverters._
import akka.stream.impl.fusing.GraphStageModule
import akka.stream.impl.fusing.GraphStages.MaterializedValueSource
import akka.stream.impl.fusing.GraphModule
import akka.event.Logging
/**
* INTERNAL API
*/
2015-12-15 16:44:48 +01:00
object StreamLayout {
// compile-time constant
2015-05-07 15:20:25 +02:00
final val Debug = false
2015-12-14 17:02:00 +01:00
final def validate(m: Module, level: Int = 0, doPrint: Boolean = false, idMap: ju.Map[AnyRef, Integer] = new ju.HashMap): Unit = {
val ids = Iterator from 1
def id(obj: AnyRef) = idMap get obj match {
2015-12-14 17:02:00 +01:00
case null
val x = ids.next()
2015-12-14 17:02:00 +01:00
idMap.put(obj, x)
x
2015-12-14 17:02:00 +01:00
case x x
}
def in(i: InPort) = s"${i.toString}@${id(i)}"
def out(o: OutPort) = s"${o.toString}@${id(o)}"
def ins(i: Iterable[InPort]) = i.map(in).mkString("In[", ",", "]")
def outs(o: Iterable[OutPort]) = o.map(out).mkString("Out[", ",", "]")
def pair(p: (OutPort, InPort)) = s"${in(p._2)}->${out(p._1)}"
def pairs(p: Iterable[(OutPort, InPort)]) = p.map(pair).mkString("[", ",", "]")
import m._
val inset: Set[InPort] = shape.inlets.toSet
val outset: Set[OutPort] = shape.outlets.toSet
var problems: List[String] = Nil
if (inset.size != shape.inlets.size) problems ::= "shape has duplicate inlets: " + ins(shape.inlets)
if (inset != inPorts) problems ::= s"shape has extra ${ins(inset -- inPorts)}, module has extra ${ins(inPorts -- inset)}"
if (inset.intersect(upstreams.keySet).nonEmpty) problems ::= s"found connected inlets ${inset.intersect(upstreams.keySet)}"
if (outset.size != shape.outlets.size) problems ::= "shape has duplicate outlets: " + outs(shape.outlets)
if (outset != outPorts) problems ::= s"shape has extra ${outs(outset -- outPorts)}, module has extra ${outs(outPorts -- outset)}"
if (outset.intersect(downstreams.keySet).nonEmpty) problems ::= s"found connected outlets ${outset.intersect(downstreams.keySet)}"
val ups = upstreams.toSet
val ups2 = ups.map(_.swap)
val downs = downstreams.toSet
val inter = ups2.intersect(downs)
if (downs != ups2) problems ::= s"inconsistent maps: ups ${pairs(ups2 -- inter)} downs ${pairs(downs -- inter)}"
val (allIn, dupIn, allOut, dupOut) =
subModules.foldLeft((Set.empty[InPort], Set.empty[InPort], Set.empty[OutPort], Set.empty[OutPort])) {
2015-08-01 00:13:14 +02:00
case ((ai, di, ao, doo), sm)
(ai ++ sm.inPorts, di ++ ai.intersect(sm.inPorts), ao ++ sm.outPorts, doo ++ ao.intersect(sm.outPorts))
}
if (dupIn.nonEmpty) problems ::= s"duplicate ports in submodules ${ins(dupIn)}"
if (dupOut.nonEmpty) problems ::= s"duplicate ports in submodules ${outs(dupOut)}"
if (!isSealed && (inset -- allIn).nonEmpty) problems ::= s"foreign inlets ${ins(inset -- allIn)}"
if (!isSealed && (outset -- allOut).nonEmpty) problems ::= s"foreign outlets ${outs(outset -- allOut)}"
val unIn = allIn -- inset -- upstreams.keySet
if (unIn.nonEmpty && !isCopied) problems ::= s"unconnected inlets ${ins(unIn)}"
val unOut = allOut -- outset -- downstreams.keySet
if (unOut.nonEmpty && !isCopied) problems ::= s"unconnected outlets ${outs(unOut)}"
def atomics(n: MaterializedValueNode): Set[Module] =
n match {
case Ignore Set.empty
case Transform(f, dep) atomics(dep)
2015-08-01 00:13:14 +02:00
case Atomic(module) Set(module)
case Combine(f, left, right) atomics(left) ++ atomics(right)
}
val atomic = atomics(materializedValueComputation)
2015-12-14 17:02:00 +01:00
val graphValues = subModules.flatMap {
case GraphModule(_, _, _, mvids) mvids
case _ Nil
}
if ((atomic -- subModules -- graphValues - m).nonEmpty)
problems ::= s"computation refers to non-existent modules [${atomic -- subModules -- graphValues - m mkString ","}]"
val print = doPrint || problems.nonEmpty
if (print) {
val indent = " " * (level * 2)
println(s"$indent${simpleName(this)}($shape): ${ins(inPorts)} ${outs(outPorts)}")
downstreams foreach { case (o, i) println(s"$indent ${out(o)} -> ${in(i)}") }
problems foreach (p println(s"$indent -!- $p"))
}
subModules foreach (sm validate(sm, level + 1, print, idMap))
if (problems.nonEmpty && !doPrint) throw new IllegalStateException(s"module inconsistent, found ${problems.size} problems")
}
object IgnorableMatValComp {
def apply(comp: MaterializedValueNode): Boolean =
comp match {
case Atomic(module) IgnorableMatValComp(module)
case _: Combine | _: Transform false
case Ignore true
}
def apply(module: Module): Boolean =
module match {
case _: AtomicModule | EmptyModule true
case CopiedModule(_, _, module) IgnorableMatValComp(module)
case CompositeModule(_, _, _, _, comp, _) IgnorableMatValComp(comp)
case FusedModule(_, _, _, _, comp, _, _) IgnorableMatValComp(comp)
}
}
2015-12-14 17:02:00 +01:00
sealed trait MaterializedValueNode {
/*
* These nodes are used in hash maps and therefore must have efficient implementations
* of hashCode and equals. There is no value in allowing aliases to be equal, so using
* reference equality.
*/
override def hashCode: Int = super.hashCode
override def equals(other: Any): Boolean = super.equals(other)
}
case class Combine(f: (Any, Any) Any, dep1: MaterializedValueNode, dep2: MaterializedValueNode) extends MaterializedValueNode {
override def toString: String = s"Combine($dep1,$dep2)"
}
case class Atomic(module: Module) extends MaterializedValueNode {
override def toString: String = f"Atomic(${module.attributes.nameOrDefault(module.getClass.getName)}[${System.identityHashCode(module)}%08x])"
2015-12-14 17:02:00 +01:00
}
case class Transform(f: Any Any, dep: MaterializedValueNode) extends MaterializedValueNode {
override def toString: String = s"Transform($dep)"
}
case object Ignore extends MaterializedValueNode
sealed trait Module {
def shape: Shape
/**
* Verify that the given Shape has the same ports and return a new module with that shape.
* Concrete implementations may throw UnsupportedOperationException where applicable.
*
* Please note that this method MUST NOT be implemented using a CopiedModule since
* the purpose of replaceShape can also be to rearrange the ports (as in BidiFlow.reversed)
* and that purpose would be defeated.
*/
def replaceShape(s: Shape): Module
final lazy val inPorts: Set[InPort] = shape.inlets.toSet
final lazy val outPorts: Set[OutPort] = shape.outlets.toSet
def isRunnable: Boolean = inPorts.isEmpty && outPorts.isEmpty
final def isSink: Boolean = (inPorts.size == 1) && outPorts.isEmpty
final def isSource: Boolean = (outPorts.size == 1) && inPorts.isEmpty
final def isFlow: Boolean = (inPorts.size == 1) && (outPorts.size == 1)
final def isBidiFlow: Boolean = (inPorts.size == 2) && (outPorts.size == 2)
def isAtomic: Boolean = subModules.isEmpty
def isCopied: Boolean = false
2015-12-15 16:44:48 +01:00
def isFused: Boolean = false
/**
* Fuses this Module to `that` Module by wiring together `from` and `to`,
* retaining the materialized value of `this` in the result
* @param that a Module to fuse with
* @param from the data source to wire
* @param to the data sink to wire
* @return a Module representing the fusion of `this` and `that`
*/
final def fuse(that: Module, from: OutPort, to: InPort): Module =
fuse(that, from, to, Keep.left)
/**
* Fuses this Module to `that` Module by wiring together `from` and `to`,
* transforming the materialized values of `this` and `that` using the
* provided function `f`
* @param that a Module to fuse with
* @param from the data source to wire
* @param to the data sink to wire
* @param f the function to apply to the materialized values
* @return a Module representing the fusion of `this` and `that`
*/
final def fuse[A, B, C](that: Module, from: OutPort, to: InPort, f: (A, B) C): Module =
this.compose(that, f).wire(from, to)
/**
* Creates a new Module based on the current Module but with
* the given OutPort wired to the given InPort.
*
* @param from the OutPort to wire
* @param to the InPort to wire
* @return a new Module with the ports wired
*/
final def wire(from: OutPort, to: InPort): Module = {
if (Debug) validate(this)
require(outPorts(from),
if (downstreams.contains(from)) s"The output port [$from] is already connected"
else s"The output port [$from] is not part of the underlying graph.")
require(inPorts(to),
if (upstreams.contains(to)) s"The input port [$to] is already connected"
else s"The input port [$to] is not part of the underlying graph.")
CompositeModule(
2015-12-15 16:44:48 +01:00
if (isSealed) Set(this) else subModules,
AmorphousShape(shape.inlets.filterNot(_ == to), shape.outlets.filterNot(_ == from)),
downstreams.updated(from, to),
upstreams.updated(to, from),
materializedValueComputation,
if (isSealed) Attributes.none else attributes)
}
final def transformMaterializedValue(f: Any Any): Module = {
if (Debug) validate(this)
CompositeModule(
2015-12-14 17:02:00 +01:00
if (this.isSealed) Set(this) else this.subModules,
shape,
downstreams,
upstreams,
Transform(f, if (this.isSealed) Atomic(this) else this.materializedValueComputation),
if (this.isSealed) Attributes.none else attributes)
}
/**
* Creates a new Module which is `this` Module composed with `that` Module.
*
* @param that a Module to be composed with (cannot be itself)
* @return a Module that represents the composition of `this` and `that`
*/
def compose(that: Module): Module = compose(that, Keep.left)
/**
* Creates a new Module which is `this` Module composed with `that` Module,
* using the given function `f` to compose the materialized value of `this` with
* the materialized value of `that`.
* @param that a Module to be composed with (cannot be itself)
* @param f a function which combines the materialized values
* @tparam A the type of the materialized value of `this`
* @tparam B the type of the materialized value of `that`
* @tparam C the type of the materialized value of the returned Module
* @return a Module that represents the composition of `this` and `that`
*/
def compose[A, B, C](that: Module, f: (A, B) C): Module = {
if (Debug) validate(this)
2015-07-29 23:01:26 +01:00
require(that ne this, "A module cannot be added to itself. You should pass a separate instance to compose().")
require(!subModules(that), "An existing submodule cannot be added again. All contained modules must be unique.")
val modulesLeft = if (this.isSealed) Set(this) else this.subModules
val modulesRight = if (that.isSealed) Set(that) else that.subModules
val matCompLeft = if (this.isSealed) Atomic(this) else this.materializedValueComputation
val matCompRight = if (that.isSealed) Atomic(that) else that.materializedValueComputation
val mat =
{
val comp =
if (f == scaladsl.Keep.left) {
if (IgnorableMatValComp(matCompRight)) matCompLeft else null
} else if (f == scaladsl.Keep.right) {
if (IgnorableMatValComp(matCompLeft)) matCompRight else null
} else null
if (comp == null) Combine(f.asInstanceOf[(Any, Any) Any], matCompLeft, matCompRight)
else comp
}
CompositeModule(
modulesLeft ++ modulesRight,
AmorphousShape(shape.inlets ++ that.shape.inlets, shape.outlets ++ that.shape.outlets),
downstreams ++ that.downstreams,
upstreams ++ that.upstreams,
mat,
Attributes.none)
}
2015-12-14 17:02:00 +01:00
/**
* Creates a new Module which is `this` Module composed with `that` Module.
*
* The difference to compose(that) is that this version completely ignores the materialized value
* computation of `that` while the normal version executes the computation and discards its result.
* This means that this version must not be used for user-provided `that` modules because users may
* transform materialized values only to achieve some side-effect; it can only be
* used where we know that there is no meaningful computation to be done (like for
* MaterializedValueSource).
*
* @param that a Module to be composed with (cannot be itself)
* @return a Module that represents the composition of `this` and `that`
*/
def composeNoMat(that: Module): Module = {
if (Debug) validate(this)
require(that ne this, "A module cannot be added to itself. You should pass a separate instance to compose().")
require(!subModules(that), "An existing submodule cannot be added again. All contained modules must be unique.")
val modules1 = if (this.isSealed) Set(this) else this.subModules
val modules2 = if (that.isSealed) Set(that) else that.subModules
val matComputation = if (this.isSealed) Atomic(this) else this.materializedValueComputation
CompositeModule(
modules1 ++ modules2,
AmorphousShape(shape.inlets ++ that.shape.inlets, shape.outlets ++ that.shape.outlets),
downstreams ++ that.downstreams,
upstreams ++ that.upstreams,
// would like to optimize away this allocation for Keep.{left,right} but that breaks side-effecting transformations
matComputation,
Attributes.none)
}
def subModules: Set[Module]
final def isSealed: Boolean = isAtomic || isCopied || isFused || attributes.attributeList.nonEmpty
def downstreams: Map[OutPort, InPort] = Map.empty
def upstreams: Map[InPort, OutPort] = Map.empty
def materializedValueComputation: MaterializedValueNode = Atomic(this)
/**
* The purpose of this method is to create a copy to be included in a larger
* graph such that port identity clashes are avoided. Where a full copy is not
* possible or desirable, use a CopiedModule. The shape of the resulting
* module MUST NOT contain the same ports as this modules shape.
*/
def carbonCopy: Module
def attributes: Attributes
def withAttributes(attributes: Attributes): Module
final override def hashCode(): Int = super.hashCode()
final override def equals(obj: scala.Any): Boolean = super.equals(obj)
}
case object EmptyModule extends Module {
2015-02-26 11:58:29 +01:00
override def shape = ClosedShape
override def replaceShape(s: Shape) =
if (s != shape) throw new UnsupportedOperationException("cannot replace the shape of the EmptyModule")
else this
override def compose(that: Module): Module = that
override def compose[A, B, C](that: Module, f: (A, B) C): Module =
throw new UnsupportedOperationException("It is invalid to combine materialized value with EmptyModule")
override def withAttributes(attributes: Attributes): Module =
throw new UnsupportedOperationException("EmptyModule cannot carry attributes")
override def subModules: Set[Module] = Set.empty
override def attributes = Attributes.none
override def carbonCopy: Module = this
override def isRunnable: Boolean = false
override def isAtomic: Boolean = false
override def materializedValueComputation: MaterializedValueNode = Ignore
}
2015-12-14 17:02:00 +01:00
final case class CopiedModule(override val shape: Shape,
override val attributes: Attributes,
copyOf: Module) extends Module {
override val subModules: Set[Module] = Set(copyOf)
override def withAttributes(attr: Attributes): Module =
if (attr ne attributes) this.copy(attributes = attr)
else this
override def carbonCopy: Module = this.copy(shape = shape.deepCopy())
override def replaceShape(s: Shape): Module =
if (s != shape) {
shape.requireSamePortsAs(s)
CompositeModule(this, s)
} else this
override val materializedValueComputation: MaterializedValueNode = Atomic(copyOf)
override def isCopied: Boolean = true
override def toString: String = f"[${System.identityHashCode(this)}%08x] copy of $copyOf"
}
final case class CompositeModule(
override val subModules: Set[Module],
override val shape: Shape,
override val downstreams: Map[OutPort, InPort],
override val upstreams: Map[InPort, OutPort],
override val materializedValueComputation: MaterializedValueNode,
override val attributes: Attributes) extends Module {
override def replaceShape(s: Shape): Module =
if (s != shape) {
shape.requireSamePortsAs(s)
copy(shape = s)
} else this
override def carbonCopy: Module = CopiedModule(shape.deepCopy(), attributes, copyOf = this)
override def withAttributes(attributes: Attributes): Module = copy(attributes = attributes)
override def toString =
f"""CompositeModule [${System.identityHashCode(this)}%08x]
| Name: ${this.attributes.nameOrDefault("unnamed")}
| Modules:
| ${subModules.iterator.map(m s"(${m.attributes.nameLifted.getOrElse("unnamed")}) ${m.toString.replaceAll("\n", "\n ")}").mkString("\n ")}
| Downstreams: ${downstreams.iterator.map { case (in, out) s"\n $in -> $out" }.mkString("")}
| Upstreams: ${upstreams.iterator.map { case (out, in) s"\n $out -> $in" }.mkString("")}
| MatValue: $materializedValueComputation""".stripMargin
}
2015-12-14 17:02:00 +01:00
object CompositeModule {
def apply(m: Module, s: Shape): CompositeModule = CompositeModule(Set(m), s, Map.empty, Map.empty, Atomic(m), Attributes.none)
}
2015-12-14 17:02:00 +01:00
final case class FusedModule(
override val subModules: Set[Module],
override val shape: Shape,
override val downstreams: Map[OutPort, InPort],
override val upstreams: Map[InPort, OutPort],
override val materializedValueComputation: MaterializedValueNode,
override val attributes: Attributes,
info: Fusing.StructuralInfo) extends Module {
2015-12-14 17:02:00 +01:00
2015-12-15 16:44:48 +01:00
override def isFused: Boolean = true
override def replaceShape(s: Shape): Module =
if (s != shape) {
shape.requireSamePortsAs(s)
copy(shape = s)
} else this
2015-12-14 17:02:00 +01:00
override def carbonCopy: Module = CopiedModule(shape.deepCopy(), attributes, copyOf = this)
override def withAttributes(attributes: Attributes): FusedModule = copy(attributes = attributes)
override def toString =
f"""FusedModule [${System.identityHashCode(this)}%08x]
| Name: ${this.attributes.nameOrDefault("unnamed")}
| Modules:
| ${subModules.iterator.map(m m.attributes.nameLifted.getOrElse(m.toString.replaceAll("\n", "\n "))).mkString("\n ")}
| Downstreams: ${downstreams.iterator.map { case (in, out) s"\n $in -> $out" }.mkString("")}
| Upstreams: ${upstreams.iterator.map { case (out, in) s"\n $out -> $in" }.mkString("")}
| MatValue: $materializedValueComputation""".stripMargin
}
/**
* This is the only extension point for the sealed type hierarchy: composition
* (i.e. the module tree) is managed strictly within this file, only leaf nodes
* may be declared elsewhere.
*/
abstract class AtomicModule extends Module {
final override def subModules: Set[Module] = Set.empty
final override def downstreams: Map[OutPort, InPort] = super.downstreams
final override def upstreams: Map[InPort, OutPort] = super.upstreams
2015-12-14 17:02:00 +01:00
}
}
/**
* INTERNAL API
*/
private[stream] object VirtualProcessor {
case object Inert {
val subscriber = new CancellingSubscriber[Any]
}
case class Both(subscriber: Subscriber[Any])
object Both {
def create(s: Subscriber[_]) = Both(s.asInstanceOf[Subscriber[Any]])
}
}
/**
* INTERNAL API
*
* This is a transparent processor that shall consume as little resources as
* possible. Due to the possibility of receiving uncoordinated inputs from both
* downstream and upstream, this needs an atomic state machine which looks a
* little like this:
*
* +--------------+ (2) +------------+
* | null | ----------> | Subscriber |
* +--------------+ +------------+
* | |
* (1) | | (1)
* \|/ \|/
* +--------------+ (2) +------------+ --\
* | Subscription | ----------> | Both | | (4)
* +--------------+ +------------+ <-/
* | |
* (3) | | (3)
* \|/ \|/
* +--------------+ (2) +------------+ --\
* | Publisher | ----------> | Inert | | (4, *)
* +--------------+ +------------+ <-/
*
* The idea is to keep the major state in only one atomic reference. The actions
* that can happen are:
*
* (1) onSubscribe
* (2) subscribe
* (3) onError / onComplete
* (4) onNext
* (*) Inert can be reached also by cancellation after which onNext is still fine
* so we just silently ignore possible spec violations here
*
* Any event that occurs in a state where no matching outgoing arrow can be found
* is a spec violation, leading to the shutdown of this processor (meaning that
* the state is updated such that all following actions match that of a failed
* Publisher or a cancelling Subscriber, and the non-guilty party is informed if
* already connected).
*
* request() can only be called after the Subscriber has received the Subscription
* and that also means that onNext() will only happen after having transitioned into
* the Both state as well. The Publisher state means that if the real
* Publisher terminates before we get the Subscriber, we can just forget about the
* real one and keep an already finished one around for the Subscriber.
*
* The Subscription that is offered to the Subscriber must cancel the original
* Publisher if things go wrong (like `request(0)` coming in from downstream) and
* it must ensure that we drop the Subscriber reference when `cancel` is invoked.
*/
private[stream] final class VirtualProcessor[T] extends AtomicReference[AnyRef] with Processor[T, T] {
import VirtualProcessor._
import ReactiveStreamsCompliance._
override def subscribe(s: Subscriber[_ >: T]): Unit = {
@tailrec def rec(sub: Subscriber[Any]): Unit =
get() match {
case null => if (!compareAndSet(null, s)) rec(sub)
case subscription: Subscription =>
if (compareAndSet(subscription, Both(sub))) establishSubscription(sub, subscription)
else rec(sub)
case pub: Publisher[_] =>
if (compareAndSet(pub, Inert)) pub.subscribe(sub)
else rec(sub)
case _ =>
rejectAdditionalSubscriber(sub, "VirtualProcessor")
}
if (s == null) {
val ex = subscriberMustNotBeNullException
try rec(Inert.subscriber)
finally throw ex // must throw NPE, rule 2:13
} else rec(s.asInstanceOf[Subscriber[Any]])
}
override final def onSubscribe(s: Subscription): Unit = {
@tailrec def rec(obj: AnyRef): Unit =
get() match {
case null => if (!compareAndSet(null, obj)) rec(obj)
case subscriber: Subscriber[_] =>
obj match {
case subscription: Subscription =>
if (compareAndSet(subscriber, Both.create(subscriber))) establishSubscription(subscriber, subscription)
else rec(obj)
case pub: Publisher[_] =>
getAndSet(Inert) match {
case Inert => // nothing to be done
case _ => pub.subscribe(subscriber.asInstanceOf[Subscriber[Any]])
}
}
case _ =>
// spec violation
tryCancel(s)
}
if (s == null) {
val ex = subscriptionMustNotBeNullException
try rec(ErrorPublisher(ex, "failed-VirtualProcessor"))
finally throw ex // must throw NPE, rule 2:13
} else rec(s)
}
private def establishSubscription(subscriber: Subscriber[_], subscription: Subscription): Unit = {
val wrapped = new WrappedSubscription(subscription)
try subscriber.onSubscribe(wrapped)
catch {
case NonFatal(ex) =>
set(Inert)
tryCancel(subscription)
tryOnError(subscriber, ex)
}
}
override def onError(t: Throwable): Unit = {
/*
* `ex` is always a reasonable Throwable that we should communicate downstream,
* but if `t` was `null` then the spec requires us to throw an NPE (which `ex`
* will be in this case).
*/
@tailrec def rec(ex: Throwable): Unit =
get() match {
case null =>
if (!compareAndSet(null, ErrorPublisher(ex, "failed-VirtualProcessor"))) rec(ex)
else if (t == null) throw ex
case s: Subscription =>
if (!compareAndSet(s, ErrorPublisher(ex, "failed-VirtualProcessor"))) rec(ex)
else if (t == null) throw ex
case Both(s) =>
set(Inert)
try tryOnError(s, ex)
finally if (t == null) throw ex // must throw NPE, rule 2:13
case s: Subscriber[_] => // spec violation
getAndSet(Inert) match {
case Inert => // nothing to be done
case _ => ErrorPublisher(ex, "failed-VirtualProcessor").subscribe(s)
}
case _ => // spec violation or cancellation race, but nothing we can do
}
val ex = if (t == null) exceptionMustNotBeNullException else t
rec(ex)
}
@tailrec override final def onComplete(): Unit =
get() match {
case null => if (!compareAndSet(null, EmptyPublisher)) onComplete()
case s: Subscription => if (!compareAndSet(s, EmptyPublisher)) onComplete()
case Both(s) =>
set(Inert)
tryOnComplete(s)
case s: Subscriber[_] => // spec violation
set(Inert)
EmptyPublisher.subscribe(s)
case _ => // spec violation or cancellation race, but nothing we can do
}
override def onNext(t: T): Unit =
if (t == null) {
val ex = elementMustNotBeNullException
@tailrec def rec(): Unit =
get() match {
case x @ (null | _: Subscription) => if (!compareAndSet(x, ErrorPublisher(ex, "failed-VirtualProcessor"))) rec()
case s: Subscriber[_] => try s.onError(ex) catch { case NonFatal(_) => } finally set(Inert)
case Both(s) => try s.onError(ex) catch { case NonFatal(_) => } finally set(Inert)
case _ => // spec violation or cancellation race, but nothing we can do
}
rec()
throw ex // must throw NPE, rule 2:13
} else {
@tailrec def rec(): Unit =
get() match {
case Both(s) =>
try s.onNext(t)
catch {
case NonFatal(e) =>
set(Inert)
throw new IllegalStateException("Subscriber threw exception, this is in violation of rule 2:13", e)
}
case s: Subscriber[_] => // spec violation
val ex = new IllegalStateException(noDemand)
getAndSet(Inert) match {
case Inert => // nothing to be done
case _ => ErrorPublisher(ex, "failed-VirtualProcessor").subscribe(s)
}
throw ex
case Inert | _: Publisher[_] => // nothing to be done
case other =>
val pub = ErrorPublisher(new IllegalStateException(noDemand), "failed-VirtualPublisher")
if (!compareAndSet(other, pub)) rec()
else throw pub.t
}
rec()
}
private def noDemand = "spec violation: onNext was signaled from upstream without demand"
private class WrappedSubscription(real: Subscription) extends Subscription {
override def request(n: Long): Unit = {
if (n < 1) {
tryCancel(real)
getAndSet(Inert) match {
case Both(s) => rejectDueToNonPositiveDemand(s)
case Inert => // another failure has won the race
case _ => // this cannot possibly happen, but signaling errors is impossible at this point
}
} else real.request(n)
}
override def cancel(): Unit = {
set(Inert)
real.cancel()
}
}
}
/**
2016-02-24 22:00:32 -08:00
* INTERNAL API
*
* The implementation of `Sink.asPublisher` needs to offer a `Publisher` that
* defers to the upstream that is connected during materialization. This would
* be trivial if it were not for materialized value computations that may even
* spawn the code that does `pub.subscribe(sub)` in a Future, running concurrently
* with the actual materialization. Therefore we implement a minimial shell here
* that plugs the downstream and the upstream together as soon as both are known.
* Using a VirtualProcessor would technically also work, but it would defeat the
* purpose of subscription timeoutsthe subscription would always already be
* established from the Actors perspective, regardless of whether a downstream
* will ever be connected.
*
* One important consideration is that this `Publisher` must not retain a reference
* to the `Subscriber` after having hooked it up with the real `Publisher`, hence
* the use of `Inert.subscriber` as a tombstone.
*/
private[impl] class VirtualPublisher[T] extends AtomicReference[AnyRef] with Publisher[T] {
import VirtualProcessor.Inert
import ReactiveStreamsCompliance._
override def subscribe(subscriber: Subscriber[_ >: T]): Unit = {
requireNonNullSubscriber(subscriber)
@tailrec def rec(): Unit = {
get() match {
case null => if (!compareAndSet(null, subscriber)) rec()
case pub: Publisher[_] =>
if (compareAndSet(pub, Inert.subscriber)) {
pub.asInstanceOf[Publisher[T]].subscribe(subscriber)
} else rec()
case _: Subscriber[_] => rejectAdditionalSubscriber(subscriber, "Sink.asPublisher(fanout = false)")
}
}
rec() // return value is boolean only to make the expressions above compile
}
@tailrec final def registerPublisher(pub: Publisher[_]): Unit =
get() match {
case null => if (!compareAndSet(null, pub)) registerPublisher(pub)
case sub: Subscriber[r] =>
set(Inert.subscriber)
pub.asInstanceOf[Publisher[r]].subscribe(sub)
case _ => throw new IllegalStateException("internal error")
}
}
/**
* INERNAL API
*/
private[stream] object MaterializerSession {
class MaterializationPanic(cause: Throwable) extends RuntimeException("Materialization aborted.", cause) with NoStackTrace
2015-12-14 17:02:00 +01:00
final val Debug = false
}
/**
* INTERNAL API
*/
private[stream] abstract class MaterializerSession(val topLevel: StreamLayout.Module, val initialAttributes: Attributes) {
import StreamLayout._
// the contained maps store either Subscriber[Any] or VirtualPublisher, but the type system cannot express that
private var subscribersStack: List[ju.Map[InPort, AnyRef]] =
new ju.HashMap[InPort, AnyRef] :: Nil
2015-12-14 17:02:00 +01:00
private var publishersStack: List[ju.Map[OutPort, Publisher[Any]]] =
new ju.HashMap[OutPort, Publisher[Any]] :: Nil
private var matValSrcStack: List[ju.Map[MaterializedValueNode, List[MaterializedValueSource[Any]]]] =
new ju.HashMap[MaterializedValueNode, List[MaterializedValueSource[Any]]] :: Nil
/*
* Please note that this stack keeps track of the scoped modules wrapped in CopiedModule but not the CopiedModule
* itself. The reason is that the CopiedModule itself is only needed for the enterScope and exitScope methods but
* not elsewhere. For this reason they are just simply passed as parameters to those methods.
*
* The reason why the encapsulated (copied) modules are stored as mutable state to save subclasses of this class
* from passing the current scope around or even knowing about it.
*/
private var moduleStack: List[Module] = topLevel :: Nil
private def subscribers: ju.Map[InPort, AnyRef] = subscribersStack.head
2015-12-14 17:02:00 +01:00
private def publishers: ju.Map[OutPort, Publisher[Any]] = publishersStack.head
private def currentLayout: Module = moduleStack.head
private def matValSrc: ju.Map[MaterializedValueNode, List[MaterializedValueSource[Any]]] = matValSrcStack.head
// Enters a copied module and establishes a scope that prevents internals to leak out and interfere with copies
// of the same module.
// We don't store the enclosing CopiedModule itself as state since we don't use it anywhere else than exit and enter
private def enterScope(enclosing: CopiedModule): Unit = {
if (MaterializerSession.Debug) println(f"entering scope [${System.identityHashCode(enclosing)}%08x]")
2015-12-14 17:02:00 +01:00
subscribersStack ::= new ju.HashMap
publishersStack ::= new ju.HashMap
matValSrcStack ::= new ju.HashMap
moduleStack ::= enclosing.copyOf
}
// Exits the scope of the copied module and propagates Publishers/Subscribers to the enclosing scope assigning
// them to the copied ports instead of the original ones (since there might be multiple copies of the same module
// leading to port identity collisions)
// We don't store the enclosing CopiedModule itself as state since we don't use it anywhere else than exit and enter
private def exitScope(enclosing: CopiedModule): Unit = {
if (MaterializerSession.Debug) println(f"exiting scope [${System.identityHashCode(enclosing)}%08x]")
val scopeSubscribers = subscribers
val scopePublishers = publishers
subscribersStack = subscribersStack.tail
publishersStack = publishersStack.tail
matValSrcStack = matValSrcStack.tail
moduleStack = moduleStack.tail
if (MaterializerSession.Debug) println(s" subscribers = $scopeSubscribers\n publishers = $scopePublishers")
// When we exit the scope of a copied module, pick up the Subscribers/Publishers belonging to exposed ports of
// the original module and assign them to the copy ports in the outer scope that we will return to
enclosing.copyOf.shape.inlets.iterator.zip(enclosing.shape.inlets.iterator).foreach {
2015-12-14 17:02:00 +01:00
case (original, exposed) assignPort(exposed, scopeSubscribers.get(original))
}
enclosing.copyOf.shape.outlets.iterator.zip(enclosing.shape.outlets.iterator).foreach {
2015-12-14 17:02:00 +01:00
case (original, exposed) assignPort(exposed, scopePublishers.get(original))
}
}
final def materialize(): Any = {
if (MaterializerSession.Debug) println(s"beginning materialization of $topLevel")
require(topLevel ne EmptyModule, "An empty module cannot be materialized (EmptyModule was given)")
require(
topLevel.isRunnable,
s"The top level module cannot be materialized because it has unconnected ports: ${(topLevel.inPorts ++ topLevel.outPorts).mkString(", ")}")
try materializeModule(topLevel, initialAttributes and topLevel.attributes)
catch {
case NonFatal(cause)
// PANIC!!! THE END OF THE MATERIALIZATION IS NEAR!
// Cancels all intermediate Publishers and fails all intermediate Subscribers.
// (This is an attempt to clean up after an exception during materialization)
val errorPublisher = new ErrorPublisher(new MaterializationPanic(cause), "")
2015-12-14 17:02:00 +01:00
for (subMap subscribersStack; sub subMap.asScala.valuesIterator)
doSubscribe(errorPublisher, sub)
2015-12-14 17:02:00 +01:00
for (pubMap publishersStack; pub pubMap.asScala.valuesIterator)
pub.subscribe(new CancellingSubscriber)
throw cause
}
}
protected def mergeAttributes(parent: Attributes, current: Attributes): Attributes =
parent and current
2015-12-14 17:02:00 +01:00
def registerSrc(ms: MaterializedValueSource[Any]): Unit = {
if (MaterializerSession.Debug) println(s"registering source $ms")
matValSrc.get(ms.computation) match {
case null matValSrc.put(ms.computation, ms :: Nil)
case xs matValSrc.put(ms.computation, ms :: xs)
}
}
protected def materializeModule(module: Module, effectiveAttributes: Attributes): Any = {
2015-12-14 17:02:00 +01:00
val materializedValues: ju.Map[Module, Any] = new ju.HashMap
if (MaterializerSession.Debug) println(f"entering module [${System.identityHashCode(module)}%08x] (${Logging.simpleName(module)})")
for (submodule module.subModules) {
val subEffectiveAttributes = mergeAttributes(effectiveAttributes, submodule.attributes)
submodule match {
case atomic: AtomicModule
2015-12-14 17:02:00 +01:00
materializeAtomic(atomic, subEffectiveAttributes, materializedValues)
case copied: CopiedModule
enterScope(copied)
materializedValues.put(copied, materializeModule(copied, subEffectiveAttributes))
exitScope(copied)
case composite @ (_: CompositeModule | _: FusedModule)
materializedValues.put(composite, materializeComposite(composite, subEffectiveAttributes))
case EmptyModule => // nothing to do or say
}
}
2015-12-14 17:02:00 +01:00
if (MaterializerSession.Debug) {
println(f"resolving module [${System.identityHashCode(module)}%08x] computation ${module.materializedValueComputation}")
2015-12-14 17:02:00 +01:00
println(s" matValSrc = $matValSrc")
println(s" matVals =\n ${materializedValues.asScala.map(p "%08x".format(System.identityHashCode(p._1)) -> p._2).mkString("\n ")}")
}
val ret = resolveMaterialized(module.materializedValueComputation, materializedValues, 2)
while (!matValSrc.isEmpty) {
val node = matValSrc.keySet.iterator.next()
if (MaterializerSession.Debug) println(s" delayed computation of $node")
resolveMaterialized(node, materializedValues, 4)
2015-12-14 17:02:00 +01:00
}
if (MaterializerSession.Debug) println(f"exiting module [${System.identityHashCode(module)}%08x]")
ret
}
protected def materializeComposite(composite: Module, effectiveAttributes: Attributes): Any = {
materializeModule(composite, effectiveAttributes)
}
protected def materializeAtomic(atomic: AtomicModule, effectiveAttributes: Attributes, matVal: ju.Map[Module, Any]): Unit
private def resolveMaterialized(matNode: MaterializedValueNode, matVal: ju.Map[Module, Any], spaces: Int): Any = {
if (MaterializerSession.Debug) println(" " * spaces + matNode)
2015-12-14 17:02:00 +01:00
val ret = matNode match {
case Atomic(m) matVal.get(m)
case Combine(f, d1, d2) f(resolveMaterialized(d1, matVal, spaces + 2), resolveMaterialized(d2, matVal, spaces + 2))
case Transform(f, d) f(resolveMaterialized(d, matVal, spaces + 2))
case Ignore NotUsed
2015-12-14 17:02:00 +01:00
}
if (MaterializerSession.Debug) println(" " * spaces + s"result = $ret")
2015-12-14 17:02:00 +01:00
matValSrc.remove(matNode) match {
case null // nothing to do
case srcs
if (MaterializerSession.Debug) println(" " * spaces + s"triggering sources $srcs")
2015-12-14 17:02:00 +01:00
srcs.foreach(_.setValue(ret))
}
ret
}
final protected def assignPort(in: InPort, subscriberOrVirtual: AnyRef): Unit = {
subscribers.put(in, subscriberOrVirtual)
// Interface (unconnected) ports of the current scope will be wired when exiting the scope
if (!currentLayout.inPorts(in)) {
2015-12-14 17:02:00 +01:00
val publisher = publishers.get(currentLayout.upstreams(in))
if (publisher ne null) doSubscribe(publisher, subscriberOrVirtual)
}
}
final protected def assignPort(out: OutPort, publisher: Publisher[Any]): Unit = {
2015-12-14 17:02:00 +01:00
publishers.put(out, publisher)
// Interface (unconnected) ports of the current scope will be wired when exiting the scope
if (!currentLayout.outPorts(out)) {
2015-12-14 17:02:00 +01:00
val subscriber = subscribers.get(currentLayout.downstreams(out))
if (subscriber ne null) doSubscribe(publisher, subscriber)
}
}
private def doSubscribe(publisher: Publisher[_ <: Any], subscriberOrVirtual: AnyRef): Unit =
subscriberOrVirtual match {
case s: Subscriber[_] => publisher.subscribe(s.asInstanceOf[Subscriber[Any]])
case v: VirtualPublisher[_] => v.registerPublisher(publisher)
}
}