pekko/akka-stream/src/main/scala/akka/stream/javadsl/Flow.scala

801 lines
34 KiB
Scala
Raw Normal View History

/**
* Copyright (C) 2014 Typesafe Inc. <http://www.typesafe.com>
*/
package akka.stream.javadsl
import akka.event.LoggingAdapter
import akka.stream._
import akka.japi.{ Util, Pair }
import akka.japi.function
import akka.stream.scaladsl
import scala.annotation.unchecked.uncheckedVariance
import scala.collection.immutable
import scala.concurrent.Future
import scala.concurrent.duration.FiniteDuration
import akka.stream.stage.Stage
import akka.stream.impl.{ Stages, StreamLayout }
object Flow {
val factory: FlowCreate = new FlowCreate {}
/** Adapt [[scaladsl.Flow]] for use within Java DSL */
def adapt[I, O, M](flow: scaladsl.Flow[I, O, M]): javadsl.Flow[I, O, M] =
new Flow(flow)
/** Create a `Flow` which can process elements of type `T`. */
def empty[T](): javadsl.Flow[T, T, Unit] =
Flow.create()
/** Create a `Flow` which can process elements of type `T`. */
def create[T](): javadsl.Flow[T, T, Unit] =
adapt(scaladsl.Flow[T])
/** Create a `Flow` which can process elements of type `T`. */
def of[T](clazz: Class[T]): javadsl.Flow[T, T, Unit] =
create[T]()
/**
* A graph with the shape of a flow logically is a flow, this method makes
* it so also in type.
*/
def wrap[I, O, M](g: Graph[FlowShape[I, O], M]): Flow[I, O, M] =
g match {
case f: Flow[I, O, M] f
case other new Flow(scaladsl.Flow.wrap(other))
}
/**
* Helper to create `Flow` from a pair of sink and source.
*/
def wrap[I, O, M1, M2, M](
sink: Graph[SinkShape[I], M1],
source: Graph[SourceShape[O], M2],
combine: function.Function2[M1, M2, M]): Flow[I, O, M] = new Flow(scaladsl.Flow.wrap(sink, source)(combine.apply _))
}
/** Create a `Flow` which can process elements of type `T`. */
class Flow[-In, +Out, +Mat](delegate: scaladsl.Flow[In, Out, Mat]) extends Graph[FlowShape[In, Out], Mat] {
import scala.collection.JavaConverters._
override def shape: FlowShape[In, Out] = delegate.shape
private[stream] def module: StreamLayout.Module = delegate.module
/** Converts this Flow to its Scala DSL counterpart */
def asScala: scaladsl.Flow[In, Out, Mat] = delegate
/**
* Transform only the materialized value of this Flow, leaving all other properties as they were.
*/
def mapMaterializedValue[Mat2](f: function.Function[Mat, Mat2]): Flow[In, Out, Mat2] =
new Flow(delegate.mapMaterializedValue(f.apply _))
/**
* Transform this [[Flow]] by appending the given processing steps.
*/
def via[T, M](flow: Graph[FlowShape[Out, T], M]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.via(flow))
/**
* Transform this [[Flow]] by appending the given processing steps.
*/
def via[T, M, M2](flow: Graph[FlowShape[Out, T], M], combine: function.Function2[Mat, M, M2]): javadsl.Flow[In, T, M2] =
new Flow(delegate.viaMat(flow)(combinerToScala(combine)))
/**
* Connect this [[Flow]] to a [[Sink]], concatenating the processing steps of both.
*/
def to(sink: Graph[SinkShape[Out], _]): javadsl.Sink[In, Mat] =
new Sink(delegate.to(sink))
/**
* Connect this [[Flow]] to a [[Sink]], concatenating the processing steps of both.
*/
def to[M, M2](sink: Graph[SinkShape[Out], M], combine: function.Function2[Mat, M, M2]): javadsl.Sink[In, M2] =
new Sink(delegate.toMat(sink)(combinerToScala(combine)))
/**
* Join this [[Flow]] to another [[Flow]], by cross connecting the inputs and outputs, creating a [[RunnableFlow]]
*/
def join[M](flow: Graph[FlowShape[Out, In], M]): javadsl.RunnableFlow[Mat] =
new RunnableFlowAdapter(delegate.join(flow))
/**
* Join this [[Flow]] to another [[Flow]], by cross connecting the inputs and outputs, creating a [[RunnableFlow]]
*/
def join[M, M2](flow: Graph[FlowShape[Out, In], M], combine: function.Function2[Mat, M, M2]): javadsl.RunnableFlow[M2] =
new RunnableFlowAdapter(delegate.joinMat(flow)(combinerToScala(combine)))
/**
* Join this [[Flow]] to a [[BidiFlow]] to close off the top of the protocol stack:
* {{{
* +---------------------------+
* | Resulting Flow |
* | |
* | +------+ +------+ |
* | | | ~Out~> | | ~~> O2
* | | flow | | bidi | |
* | | | <~In~ | | <~~ I2
* | +------+ +------+ |
* +---------------------------+
* }}}
* The materialized value of the combined [[Flow]] will be the materialized
* value of the current flow (ignoring the [[BidiFlow]]s value), use
* [[Flow#joinMat[I2* joinMat]] if a different strategy is needed.
*/
def join[I2, O2, Mat2](bidi: Graph[BidiShape[Out, O2, I2, In], Mat2]): Flow[I2, O2, Mat] =
new Flow(delegate.join(bidi))
/**
* Join this [[Flow]] to a [[BidiFlow]] to close off the top of the protocol stack:
* {{{
* +---------------------------+
* | Resulting Flow |
* | |
* | +------+ +------+ |
* | | | ~Out~> | | ~~> O2
* | | flow | | bidi | |
* | | | <~In~ | | <~~ I2
* | +------+ +------+ |
* +---------------------------+
* }}}
* The `combine` function is used to compose the materialized values of this flow and that
* [[BidiFlow]] into the materialized value of the resulting [[Flow]].
*/
def join[I2, O2, Mat2, M](bidi: Graph[BidiShape[Out, O2, I2, In], Mat2], combine: function.Function2[Mat, Mat2, M]): Flow[I2, O2, M] =
new Flow(delegate.joinMat(bidi)(combinerToScala(combine)))
/**
* Connect the `KeyedSource` to this `Flow` and then connect it to the `KeyedSink` and run it.
*
* The returned tuple contains the materialized values of the `KeyedSource` and `KeyedSink`,
* e.g. the `Subscriber` of a `Source.subscriber` and `Publisher` of a `Sink.publisher`.
*
* @tparam T materialized type of given KeyedSource
* @tparam U materialized type of given KeyedSink
*/
def runWith[T, U](source: Graph[SourceShape[In], T], sink: Graph[SinkShape[Out], U], materializer: FlowMaterializer): akka.japi.Pair[T, U] = {
val p = delegate.runWith(source, sink)(materializer)
akka.japi.Pair(p._1.asInstanceOf[T], p._2.asInstanceOf[U])
}
/**
* Transform this stream by applying the given function to each of the elements
* as they pass through this processing step.
*
* '''Emits when''' the mapping function returns an element
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def map[T](f: function.Function[Out, T]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.map(f.apply))
/**
* Transform each input element into an `Iterable` of output elements that is
* then flattened into the output stream.
*
* Make sure that the `Iterable` is immutable or at least not modified after
* being used as an output sequence. Otherwise the stream may fail with
* `oncurrentModificationException` or other more subtle errors may occur.
*
* The returned `Iterable` MUST NOT contain `null` values,
* as they are illegal as stream elements - according to the Reactive Streams specification.
*
* '''Emits when''' the mapping function returns an element or there are still remaining elements
* from the previously calculated collection
*
* '''Backpressures when''' downstream backpressures or there are still remaining elements from the
* previously calculated collection
*
* '''Completes when''' upstream completes and all remaining elements has been emitted
*
* '''Cancels when''' downstream cancels
*/
def mapConcat[T](f: function.Function[Out, java.lang.Iterable[T]]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.mapConcat { elem
val scalaIterable = new immutable.Iterable[T] {
import collection.JavaConverters._
override def iterator: Iterator[T] = f(elem).iterator().asScala
}
scalaIterable
})
2014-05-23 13:52:39 +02:00
/**
* Transform this stream by applying the given function to each of the elements
* as they pass through this processing step. The function returns a `Future` and the
* value of that future will be emitted downstreams. As many futures as requested elements by
* downstream may run in parallel and may complete in any order, but the elements that
* are emitted downstream are in the same order as received from upstream.
*
* If the group by function `f` throws an exception or if the `Future` is completed
* with failure and the supervision decision is [[akka.stream.Supervision#stop]]
* the stream will be completed with failure.
*
* If the group by function `f` throws an exception or if the `Future` is completed
* with failure and the supervision decision is [[akka.stream.Supervision#resume]] or
* [[akka.stream.Supervision#restart]] the element is dropped and the stream continues.
*
* '''Emits when''' the Future returned by the provided function finishes for the next element in sequence
*
* '''Backpressures when''' the number of futures reaches the configured parallelism and the downstream
* backpressures or the first future is not completed
*
* '''Completes when''' upstream completes and all futures has been completed and all elements has been emitted
*
* '''Cancels when''' downstream cancels
*
* @see [[#mapAsyncUnordered]]
*/
def mapAsync[T](parallelism: Int, f: function.Function[Out, Future[T]]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.mapAsync(parallelism)(f.apply))
/**
* Transform this stream by applying the given function to each of the elements
* as they pass through this processing step. The function returns a `Future` and the
* value of that future will be emitted downstreams. As many futures as requested elements by
* downstream may run in parallel and each processed element will be emitted dowstream
* as soon as it is ready, i.e. it is possible that the elements are not emitted downstream
* in the same order as received from upstream.
*
* If the group by function `f` throws an exception or if the `Future` is completed
* with failure and the supervision decision is [[akka.stream.Supervision#stop]]
* the stream will be completed with failure.
*
* If the group by function `f` throws an exception or if the `Future` is completed
* with failure and the supervision decision is [[akka.stream.Supervision#resume]] or
* [[akka.stream.Supervision#restart]] the element is dropped and the stream continues.
*
* '''Emits when''' any of the Futures returned by the provided function complete
*
* '''Backpressures when''' the number of futures reaches the configured parallelism and the downstream backpressures
*
* '''Completes when''' upstream completes and all futures has been completed and all elements has been emitted
*
* '''Cancels when''' downstream cancels
*
* @see [[#mapAsync]]
*/
def mapAsyncUnordered[T](parallelism: Int, f: function.Function[Out, Future[T]]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.mapAsyncUnordered(parallelism)(f.apply))
/**
* Only pass on those elements that satisfy the given predicate.
*
* '''Emits when''' the given predicate returns true for the element
*
* '''Backpressures when''' the given predicate returns true for the element and downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*
*/
def filter(p: function.Predicate[Out]): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.filter(p.test))
/**
* Transform this stream by applying the given partial function to each of the elements
* on which the function is defined as they pass through this processing step.
* Non-matching elements are filtered out.
*
* '''Emits when''' the provided partial function is defined for the element
*
* '''Backpressures when''' the partial function is defined for the element and downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def collect[T](pf: PartialFunction[Out, T]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.collect(pf))
/**
* Chunk up this stream into groups of the given size, with the last group
* possibly smaller than requested due to end-of-stream.
*
* `n` must be positive, otherwise IllegalArgumentException is thrown.
*
* '''Emits when''' the specified number of elements has been accumulated or upstream completed
*
* '''Backpressures when''' a group has been assembled and downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def grouped(n: Int): javadsl.Flow[In, java.util.List[Out @uncheckedVariance], Mat] =
2015-04-20 15:03:03 +02:00
new Flow(delegate.grouped(n).map(_.asJava)) // TODO optimize to one step
/**
* Similar to `fold` but is not a terminal operation,
* emits its current value which starts at `zero` and then
* applies the current and next value to the given function `f`,
* emitting the next current value.
*
* If the function `f` throws an exception and the supervision decision is
* [[akka.stream.Supervision#restart]] current value starts at `zero` again
* the stream will continue.
*
* '''Emits when''' the function scanning the element returns a new element
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def scan[T](zero: T)(f: function.Function2[T, Out, T]): javadsl.Flow[In, T, Mat] =
new Flow(delegate.scan(zero)(f.apply))
/**
* Chunk up this stream into groups of elements received within a time window,
* or limited by the given number of elements, whatever happens first.
* Empty groups will not be emitted if no elements are received from upstream.
* The last group before end-of-stream will contain the buffered elements
* since the previously emitted group.
*
* '''Emits when''' the configured time elapses since the last group has been emitted
*
* '''Backpressures when''' the configured time elapses since the last group has been emitted
*
* '''Completes when''' upstream completes (emits last group)
*
* '''Cancels when''' downstream completes
*
* `n` must be positive, and `d` must be greater than 0 seconds, otherwise
* IllegalArgumentException is thrown.
*/
def groupedWithin(n: Int, d: FiniteDuration): javadsl.Flow[In, java.util.List[Out @uncheckedVariance], Mat] =
2015-04-20 15:03:03 +02:00
new Flow(delegate.groupedWithin(n, d).map(_.asJava)) // TODO optimize to one step
/**
* Discard the given number of elements at the beginning of the stream.
* No elements will be dropped if `n` is zero or negative.
*
* '''Emits when''' the specified number of elements has been dropped already
*
* '''Backpressures when''' the specified number of elements has been dropped and downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def drop(n: Long): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.drop(n))
/**
* Discard the elements received within the given duration at beginning of the stream.
*
* '''Emits when''' the specified time elapsed and a new upstream element arrives
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def dropWithin(d: FiniteDuration): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.dropWithin(d))
/**
* Terminate processing (and cancel the upstream publisher) after predicate
* returns false for the first time. Due to input buffering some elements may have been
* requested from upstream publishers that will then not be processed downstream
* of this step.
*
* The stream will be completed without producing any elements if predicate is false for
* the first stream element.
*
* '''Emits when''' the predicate is true
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' predicate returned false or upstream completes
*
* '''Cancels when''' predicate returned false or downstream cancels
*/
def takeWhile(p: function.Predicate[Out]): javadsl.Flow[In, Out, Mat] = new Flow(delegate.takeWhile(p.test))
/**
* Discard elements at the beginning of the stream while predicate is true.
* All elements will be taken after predicate returns false first time.
*
* '''Emits when''' predicate returned false and for all following stream elements
*
* '''Backpressures when''' predicate returned false and downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def dropWhile(p: function.Predicate[Out]): javadsl.Flow[In, Out, Mat] = new Flow(delegate.dropWhile(p.test))
/**
* Terminate processing (and cancel the upstream publisher) after the given
* number of elements. Due to input buffering some elements may have been
* requested from upstream publishers that will then not be processed downstream
* of this step.
*
* The stream will be completed without producing any elements if `n` is zero
* or negative.
*
* '''Emits when''' the specified number of elements to take has not yet been reached
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' the defined number of elements has been taken or upstream completes
*
* '''Cancels when''' the defined number of elements has been taken or downstream cancels
*/
def take(n: Long): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.take(n))
/**
* Terminate processing (and cancel the upstream publisher) after the given
* duration. Due to input buffering some elements may have been
* requested from upstream publishers that will then not be processed downstream
* of this step.
*
* Note that this can be combined with [[#take]] to limit the number of elements
* within the duration.
*
* '''Emits when''' an upstream element arrives
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes or timer fires
*
* '''Cancels when''' downstream cancels or timer fires
*/
def takeWithin(d: FiniteDuration): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.takeWithin(d))
/**
* Allows a faster upstream to progress independently of a slower subscriber by conflating elements into a summary
* until the subscriber is ready to accept them. For example a conflate step might average incoming numbers if the
* upstream publisher is faster.
*
* This element only rolls up elements if the upstream is faster, but if the downstream is faster it will not
* duplicate elements.
*
* '''Emits when''' downstream stops backpressuring and there is a conflated element available
*
* '''Backpressures when''' never
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*
* @param seed Provides the first state for a conflated value using the first unconsumed element as a start
* @param aggregate Takes the currently aggregated value and the current pending element to produce a new aggregate
*
*/
def conflate[S](seed: function.Function[Out, S], aggregate: function.Function2[S, Out, S]): javadsl.Flow[In, S, Mat] =
new Flow(delegate.conflate(seed.apply)(aggregate.apply))
/**
* Allows a faster downstream to progress independently of a slower publisher by extrapolating elements from an older
* element until new element comes from the upstream. For example an expand step might repeat the last element for
* the subscriber until it receives an update from upstream.
*
* This element will never "drop" upstream elements as all elements go through at least one extrapolation step.
* This means that if the upstream is actually faster than the upstream it will be backpressured by the downstream
* subscriber.
*
* Expand does not support [[akka.stream.Supervision#restart]] and [[akka.stream.Supervision#resume]].
* Exceptions from the `seed` or `extrapolate` functions will complete the stream with failure.
*
* '''Emits when''' downstream stops backpressuring
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*
* @param seed Provides the first state for extrapolation using the first unconsumed element
* @param extrapolate Takes the current extrapolation state to produce an output element and the next extrapolation
* state.
*/
def expand[S, U](seed: function.Function[Out, S], extrapolate: function.Function[S, akka.japi.Pair[U, S]]): javadsl.Flow[In, U, Mat] =
new Flow(delegate.expand(seed(_))(s {
val p = extrapolate(s)
(p.first, p.second)
}))
/**
* Adds a fixed size buffer in the flow that allows to store elements from a faster upstream until it becomes full.
2014-11-06 14:03:01 +01:00
* Depending on the defined [[akka.stream.OverflowStrategy]] it might drop elements or backpressure the upstream if
* there is no space available
*
* '''Emits when''' downstream stops backpressuring and there is a pending element in the buffer
*
* '''Backpressures when''' depending on OverflowStrategy
* * Backpressure - backpressures when buffer is full
* * DropHead, DropTail, DropBuffer - never backpressures
* * Fail - fails the stream if buffer gets full
*
* '''Completes when''' upstream completes and buffered elements has been drained
*
* '''Cancels when''' downstream cancels
*
* @param size The size of the buffer in element count
* @param overflowStrategy Strategy that is used when incoming elements cannot fit inside the buffer
*/
def buffer(size: Int, overflowStrategy: OverflowStrategy): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.buffer(size, overflowStrategy))
/**
* Generic transformation of a stream with a custom processing [[akka.stream.stage.Stage]].
* This operator makes it possible to extend the `Flow` API when there is no specialized
* operator that performs the transformation.
*/
def transform[U](mkStage: function.Creator[Stage[Out, U]]): javadsl.Flow[In, U, Mat] =
2014-12-01 20:07:55 +02:00
new Flow(delegate.transform(() mkStage.create()))
/**
* Takes up to `n` elements from the stream and returns a pair containing a strict sequence of the taken element
* and a stream representing the remaining elements. If ''n'' is zero or negative, then this will return a pair
* of an empty collection and a stream containing the whole upstream unchanged.
*
* '''Emits when''' the configured number of prefix elements are available. Emits this prefix, and the rest
* as a substream
*
* '''Backpressures when''' downstream backpressures or substream backpressures
*
* '''Completes when''' prefix elements has been consumed and substream has been consumed
*
* '''Cancels when''' downstream cancels or substream cancels
*/
def prefixAndTail(n: Int): javadsl.Flow[In, akka.japi.Pair[java.util.List[Out @uncheckedVariance], javadsl.Source[Out @uncheckedVariance, Unit]], Mat] =
new Flow(delegate.prefixAndTail(n).map { case (taken, tail) akka.japi.Pair(taken.asJava, tail.asJava) })
/**
* This operation demultiplexes the incoming stream into separate output
* streams, one for each element key. The key is computed for each element
* using the given function. When a new key is encountered for the first time
* it is emitted to the downstream subscriber together with a fresh
* flow that will eventually produce all the elements of the substream
* for that key. Not consuming the elements from the created streams will
* stop this processor from processing more elements, therefore you must take
* care to unblock (or cancel) all of the produced streams even if you want
* to consume only one of them.
*
* If the group by function `f` throws an exception and the supervision decision
* is [[akka.stream.Supervision#stop]] the stream and substreams will be completed
* with failure.
*
* If the group by function `f` throws an exception and the supervision decision
* is [[akka.stream.Supervision#resume]] or [[akka.stream.Supervision#restart]]
* the element is dropped and the stream and substreams continue.
*
* '''Emits when''' an element for which the grouping function returns a group that has not yet been created.
* Emits the new group
*
* '''Backpressures when''' there is an element pending for a group whose substream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels and all substreams cancel
*
*/
def groupBy[K](f: function.Function[Out, K]): javadsl.Flow[In, akka.japi.Pair[K, javadsl.Source[Out @uncheckedVariance, Unit]], Mat] =
2015-04-20 15:03:03 +02:00
new Flow(delegate.groupBy(f.apply).map { case (k, p) akka.japi.Pair(k, p.asJava) }) // TODO optimize to one step
/**
* This operation applies the given predicate to all incoming elements and
* emits them to a stream of output streams, always beginning a new one with
* the current element if the given predicate returns true for it. This means
* that for the following series of predicate values, three substreams will
* be produced with lengths 1, 2, and 3:
*
* {{{
* false, // element goes into first substream
* true, false, // elements go into second substream
* true, false, false // elements go into third substream
* }}}
*
* In case the *first* element of the stream matches the predicate, the first
* substream emitted by splitWhen will start from that element. For example:
*
* {{{
* true, false, false // first substream starts from the split-by element
* true, false // subsequent substreams operate the same way
* }}}
*
* If the split predicate `p` throws an exception and the supervision decision
* is [[akka.stream.Supervision#stop]] the stream and substreams will be completed
* with failure.
*
* If the split predicate `p` throws an exception and the supervision decision
* is [[akka.stream.Supervision#resume]] or [[akka.stream.Supervision#restart]]
* the element is dropped and the stream and substreams continue.
*
* '''Emits when''' an element for which the provided predicate is true, opening and emitting
* a new substream for subsequent element
*
* '''Backpressures when''' there is an element pending for the next substream, but the previous
* is not fully consumed yet, or the substream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels and substreams cancel
*/
def splitWhen(p: function.Predicate[Out]): javadsl.Flow[In, Source[Out, Unit], Mat] =
new Flow(delegate.splitWhen(p.test).map(_.asJava))
/**
* This operation applies the given predicate to all incoming elements and
* emits them to a stream of output streams. It *ends* the current substream when the
* predicate is true. This means that for the following series of predicate values,
* three substreams will be produced with lengths 2, 2, and 3:
*
* {{{
* false, true, // elements go into first substream
* false, true, // elements go into second substream
* false, false, true // elements go into third substream
* }}}
*
* If the split predicate `p` throws an exception and the supervision decision
* is [[akka.stream.Supervision.Stop]] the stream and substreams will be completed
* with failure.
*
* If the split predicate `p` throws an exception and the supervision decision
* is [[akka.stream.Supervision.Resume]] or [[akka.stream.Supervision.Restart]]
* the element is dropped and the stream and substreams continue.
*
* '''Emits when''' an element passes through. When the provided predicate is true it emitts the element
* and opens a new substream for subsequent element
*
* '''Backpressures when''' there is an element pending for the next substream, but the previous
* is not fully consumed yet, or the substream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels and substreams cancel
*
* See also [[Flow.splitWhen]].
*/
def splitAfter[U >: Out](p: function.Predicate[Out]): javadsl.Flow[In, Source[Out, Unit], Mat] =
new Flow(delegate.splitAfter(p.test).map(_.asJava))
/**
* Transforms a stream of streams into a contiguous stream of elements using the provided flattening strategy.
* This operation can be used on a stream of element type [[Source]].
*
* '''Emits when''' (Concat) the current consumed substream has an element available
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes and all consumed substreams complete
*
* '''Cancels when''' downstream cancels
*
*/
def flatten[U](strategy: FlattenStrategy[Out, U]): javadsl.Flow[In, U, Mat] =
new Flow(delegate.flatten(strategy))
/**
* Returns a new `Flow` that concatenates a secondary `Source` to this flow so that,
* the first element emitted by the given ("second") source is emitted after the last element of this Flow.
*/
def concat[M](second: Graph[SourceShape[Out @uncheckedVariance], M]): javadsl.Flow[In, Out, Mat @uncheckedVariance Pair M] =
new Flow(delegate.concat(second).mapMaterializedValue(p Pair(p._1, p._2)))
2014-12-01 20:07:55 +02:00
override def withAttributes(attr: OperationAttributes): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.withAttributes(attr))
override def named(name: String): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.named(name))
/**
* Logs elements flowing through the stream as well as completion and erroring.
*
* By default element and completion signals are logged on debug level, and errors are logged on Error level.
* This can be adjusted according to your needs by providing a custom [[OperationAttributes.LogLevels]] atrribute on the given Flow:
*
* The `extract` function will be applied to each element before logging, so it is possible to log only those fields
* of a complex object flowing through this element.
*
* Uses the given [[LoggingAdapter]] for logging.
*
* '''Emits when''' the mapping function returns an element
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def log(name: String, extract: function.Function[Out, Any], log: LoggingAdapter): javadsl.Flow[In, Out, Mat] =
new Flow(delegate.log(name, e extract.apply(e))(log))
/**
* Logs elements flowing through the stream as well as completion and erroring.
*
* By default element and completion signals are logged on debug level, and errors are logged on Error level.
* This can be adjusted according to your needs by providing a custom [[OperationAttributes.LogLevels]] atrribute on the given Flow:
*
* The `extract` function will be applied to each element before logging, so it is possible to log only those fields
* of a complex object flowing through this element.
*
* Uses an internally created [[LoggingAdapter]] which uses `akka.stream.Log` as it's source (use this class to configure slf4j loggers).
*
* '''Emits when''' the mapping function returns an element
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def log(name: String, extract: function.Function[Out, Any]): javadsl.Flow[In, Out, Mat] =
this.log(name, extract, null)
/**
* Logs elements flowing through the stream as well as completion and erroring.
*
* By default element and completion signals are logged on debug level, and errors are logged on Error level.
* This can be adjusted according to your needs by providing a custom [[OperationAttributes.LogLevels]] atrribute on the given Flow:
*
* Uses the given [[LoggingAdapter]] for logging.
*
* '''Emits when''' the mapping function returns an element
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes
*
* '''Cancels when''' downstream cancels
*/
def log(name: String, log: LoggingAdapter): javadsl.Flow[In, Out, Mat] =
this.log(name, javaIdentityFunction[Out], log)
/**
* Logs elements flowing through the stream as well as completion and erroring.
*
* By default element and completion signals are logged on debug level, and errors are logged on Error level.
* This can be adjusted according to your needs by providing a custom [[OperationAttributes.LogLevels]] atrribute on the given Flow.
*
* Uses an internally created [[LoggingAdapter]] which uses `akka.stream.Log` as it's source (use this class to configure slf4j loggers).
*/
def log(name: String): javadsl.Flow[In, Out, Mat] =
this.log(name, javaIdentityFunction[Out], null)
}
/**
* Java API
*
* Flow with attached input and output, can be executed.
*/
2015-02-26 11:58:29 +01:00
trait RunnableFlow[+Mat] extends Graph[ClosedShape, Mat] {
/**
2015-03-06 10:23:26 +01:00
* Run this flow and return the materialized values of the flow.
*/
def run(materializer: FlowMaterializer): Mat
/**
* Transform only the materialized value of this RunnableFlow, leaving all other properties as they were.
*/
def mapMaterializedValue[Mat2](f: function.Function[Mat, Mat2]): RunnableFlow[Mat2]
}
/** INTERNAL API */
private[akka] class RunnableFlowAdapter[Mat](runnable: scaladsl.RunnableFlow[Mat]) extends RunnableFlow[Mat] {
2015-02-26 11:58:29 +01:00
def shape = ClosedShape
def module = runnable.module
override def mapMaterializedValue[Mat2](f: function.Function[Mat, Mat2]): RunnableFlow[Mat2] =
new RunnableFlowAdapter(runnable.mapMaterializedValue(f.apply _))
override def run(materializer: FlowMaterializer): Mat = runnable.run()(materializer)
override def withAttributes(attr: OperationAttributes): RunnableFlow[Mat] =
new RunnableFlowAdapter(runnable.withAttributes(attr))
override def named(name: String): RunnableFlow[Mat] =
new RunnableFlowAdapter(runnable.named(name))
}