pekko/akka-docs/src/test/java/jdocs/stream/HubDocTest.java

273 lines
9.6 KiB
Java
Raw Normal View History

2016-08-11 12:21:37 +02:00
/**
2018-01-04 17:26:29 +00:00
* Copyright (C) 2015-2018 Lightbend Inc. <https://www.lightbend.com>
2016-08-11 12:21:37 +02:00
*/
package jdocs.stream;
2016-08-11 12:21:37 +02:00
import akka.Done;
import akka.NotUsed;
import akka.actor.ActorSystem;
import akka.actor.Cancellable;
import akka.japi.Pair;
import akka.stream.*;
2016-08-11 12:21:37 +02:00
import akka.stream.javadsl.*;
import akka.stream.javadsl.PartitionHub.ConsumerInfo;
import akka.testkit.javadsl.TestKit;
import jdocs.AbstractJavaTest;
2016-08-11 12:21:37 +02:00
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import java.time.Duration;
import java.util.List;
2016-08-11 12:21:37 +02:00
import java.util.concurrent.CompletionStage;
import java.util.function.ToLongBiFunction;
2016-08-11 12:21:37 +02:00
public class HubDocTest extends AbstractJavaTest {
static ActorSystem system;
static Materializer materializer;
@BeforeClass
public static void setup() {
system = ActorSystem.create("GraphDSLDocTest");
materializer = ActorMaterializer.create(system);
}
@AfterClass
public static void tearDown() {
TestKit.shutdownActorSystem(system);
2016-08-11 12:21:37 +02:00
system = null;
materializer = null;
}
@Test
public void dynamicMerge() {
//#merge-hub
// A simple consumer that will print to the console for now
Sink<String, CompletionStage<Done>> consumer = Sink.foreach(System.out::println);
// Attach a MergeHub Source to the consumer. This will materialize to a
// corresponding Sink.
RunnableGraph<Sink<String, NotUsed>> runnableGraph =
MergeHub.of(String.class, 16).to(consumer);
// By running/materializing the consumer we get back a Sink, and hence
// now have access to feed elements into it. This Sink can be materialized
// any number of times, and every element that enters the Sink will
// be consumed by our consumer.
Sink<String, NotUsed> toConsumer = runnableGraph.run(materializer);
Source.single("Hello!").runWith(toConsumer, materializer);
Source.single("Hub!").runWith(toConsumer, materializer);
//#merge-hub
}
@Test
public void dynamicBroadcast() {
// Used to be able to clean up the running stream
ActorMaterializer materializer = ActorMaterializer.create(system);
//#broadcast-hub
// A simple producer that publishes a new "message" every second
Source<String, Cancellable> producer = Source.tick(
Duration.ofSeconds(1),
Duration.ofSeconds(1),
2016-08-11 12:21:37 +02:00
"New message"
);
// Attach a BroadcastHub Sink to the producer. This will materialize to a
// corresponding Source.
// (We need to use toMat and Keep.right since by default the materialized
// value to the left is used)
RunnableGraph<Source<String, NotUsed>> runnableGraph =
producer.toMat(BroadcastHub.of(String.class, 256), Keep.right());
// By running/materializing the producer, we get back a Source, which
// gives us access to the elements published by the producer.
Source<String, NotUsed> fromProducer = runnableGraph.run(materializer);
// Print out messages from the producer in two independent consumers
fromProducer.runForeach(msg -> System.out.println("consumer1: " + msg), materializer);
fromProducer.runForeach(msg -> System.out.println("consumer2: " + msg), materializer);
//#broadcast-hub
// Cleanup
materializer.shutdown();
}
@Test
public void mergeBroadcastCombination() {
//#pub-sub-1
// Obtain a Sink and Source which will publish and receive from the "bus" respectively.
Pair<Sink<String, NotUsed>, Source<String, NotUsed>> sinkAndSource =
MergeHub.of(String.class, 16)
.toMat(BroadcastHub.of(String.class, 256), Keep.both())
.run(materializer);
Sink<String, NotUsed> sink = sinkAndSource.first();
Source<String, NotUsed> source = sinkAndSource.second();
//#pub-sub-1
//#pub-sub-2
// Ensure that the Broadcast output is dropped if there are no listening parties.
// If this dropping Sink is not attached, then the broadcast hub will not drop any
// elements itself when there are no subscribers, backpressuring the producer instead.
source.runWith(Sink.ignore(), materializer);
//#pub-sub-2
//#pub-sub-3
// We create now a Flow that represents a publish-subscribe channel using the above
// started stream as its "topic". We add two more features, external cancellation of
// the registration and automatic cleanup for very slow subscribers.
Flow<String, String, UniqueKillSwitch> busFlow =
Flow.fromSinkAndSource(sink, source)
.joinMat(KillSwitches.singleBidi(), Keep.right())
.backpressureTimeout(Duration.ofSeconds(1));
2016-08-11 12:21:37 +02:00
//#pub-sub-3
//#pub-sub-4
UniqueKillSwitch killSwitch =
Source.repeat("Hello World!")
.viaMat(busFlow, Keep.right())
.to(Sink.foreach(System.out::println))
.run(materializer);
// Shut down externally
killSwitch.shutdown();
//#pub-sub-4
}
@Test
public void dynamicPartition() {
// Used to be able to clean up the running stream
ActorMaterializer materializer = ActorMaterializer.create(system);
//#partition-hub
// A simple producer that publishes a new "message-n" every second
Source<String, Cancellable> producer = Source.tick(
Duration.ofSeconds(1),
Duration.ofSeconds(1),
"message"
).zipWith(Source.range(0, 100), (a, b) -> a + "-" + b);
// Attach a PartitionHub Sink to the producer. This will materialize to a
// corresponding Source.
// (We need to use toMat and Keep.right since by default the materialized
// value to the left is used)
RunnableGraph<Source<String, NotUsed>> runnableGraph =
producer.toMat(PartitionHub.of(
String.class,
(size, elem) -> Math.abs(elem.hashCode()) % size,
2, 256), Keep.right());
// By running/materializing the producer, we get back a Source, which
// gives us access to the elements published by the producer.
Source<String, NotUsed> fromProducer = runnableGraph.run(materializer);
// Print out messages from the producer in two independent consumers
fromProducer.runForeach(msg -> System.out.println("consumer1: " + msg), materializer);
fromProducer.runForeach(msg -> System.out.println("consumer2: " + msg), materializer);
//#partition-hub
// Cleanup
materializer.shutdown();
}
//#partition-hub-stateful-function
// Using a class since variable must otherwise be final.
// New instance is created for each materialization of the PartitionHub.
static class RoundRobin<T> implements ToLongBiFunction<ConsumerInfo, T> {
private long i = -1;
@Override
public long applyAsLong(ConsumerInfo info, T elem) {
i++;
return info.consumerIdByIdx((int) (i % info.size()));
}
}
//#partition-hub-stateful-function
@Test
public void dynamicStatefulPartition() {
// Used to be able to clean up the running stream
ActorMaterializer materializer = ActorMaterializer.create(system);
//#partition-hub-stateful
// A simple producer that publishes a new "message-n" every second
Source<String, Cancellable> producer = Source.tick(
Duration.ofSeconds(1),
Duration.ofSeconds(1),
"message"
).zipWith(Source.range(0, 100), (a, b) -> a + "-" + b);
// Attach a PartitionHub Sink to the producer. This will materialize to a
// corresponding Source.
// (We need to use toMat and Keep.right since by default the materialized
// value to the left is used)
RunnableGraph<Source<String, NotUsed>> runnableGraph =
producer.toMat(
PartitionHub.ofStateful(
String.class,
() -> new RoundRobin<String>(),
2,
256),
Keep.right());
// By running/materializing the producer, we get back a Source, which
// gives us access to the elements published by the producer.
Source<String, NotUsed> fromProducer = runnableGraph.run(materializer);
// Print out messages from the producer in two independent consumers
fromProducer.runForeach(msg -> System.out.println("consumer1: " + msg), materializer);
fromProducer.runForeach(msg -> System.out.println("consumer2: " + msg), materializer);
//#partition-hub-stateful
// Cleanup
materializer.shutdown();
}
@Test
public void dynamicFastestPartition() {
// Used to be able to clean up the running stream
ActorMaterializer materializer = ActorMaterializer.create(system);
//#partition-hub-fastest
Source<Integer, NotUsed> producer = Source.range(0, 100);
// ConsumerInfo.queueSize is the approximate number of buffered elements for a consumer.
// Note that this is a moving target since the elements are consumed concurrently.
RunnableGraph<Source<Integer, NotUsed>> runnableGraph =
producer.toMat(
PartitionHub.ofStateful(
Integer.class,
() -> (info, elem) -> {
final List<Object> ids = info.getConsumerIds();
int minValue = info.queueSize(0);
long fastest = info.consumerIdByIdx(0);
for (int i = 1; i < ids.size(); i++) {
int value = info.queueSize(i);
if (value < minValue) {
minValue = value;
fastest = info.consumerIdByIdx(i);
}
}
return fastest;
},
2,
8),
Keep.right());
Source<Integer, NotUsed> fromProducer = runnableGraph.run(materializer);
fromProducer.runForeach(msg -> System.out.println("consumer1: " + msg), materializer);
fromProducer.throttle(10, Duration.ofMillis(100))
.runForeach(msg -> System.out.println("consumer2: " + msg), materializer);
//#partition-hub-fastest
// Cleanup
materializer.shutdown();
}
2016-08-11 12:21:37 +02:00
}