2015-02-05 10:38:00 +01:00
|
|
|
.. _stream-customize-java:
|
|
|
|
|
|
|
|
|
|
########################
|
|
|
|
|
Custom stream processing
|
|
|
|
|
########################
|
|
|
|
|
|
|
|
|
|
While the processing vocabulary of Akka Streams is quite rich (see the :ref:`stream-cookbook-java` for examples) it
|
|
|
|
|
is sometimes necessary to define new transformation stages either because some functionality is missing from the
|
|
|
|
|
stock operations, or for performance reasons. In this part we show how to build custom processing stages and graph
|
|
|
|
|
junctions of various kinds.
|
|
|
|
|
|
|
|
|
|
Custom linear processing stages
|
|
|
|
|
===============================
|
|
|
|
|
|
|
|
|
|
To extend the available transformations on a :class:`Flow` or :class:`Source` one can use the ``transform()`` method
|
|
|
|
|
which takes a factory function returning a :class:`Stage`. Stages come in different flavors swhich we will introduce in this
|
|
|
|
|
page.
|
|
|
|
|
|
|
|
|
|
.. _stream-using-push-pull-stage-java:
|
|
|
|
|
|
|
|
|
|
Using PushPullStage
|
|
|
|
|
-------------------
|
|
|
|
|
|
|
|
|
|
The most elementary transformation stage is the :class:`PushPullStage` which can express a large class of algorithms
|
|
|
|
|
working on streams. A :class:`PushPullStage` can be illustrated as a box with two "input" and two "output ports" as it is
|
|
|
|
|
seen in the illustration below.
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
.. image:: ../images/stage_conceptual.png
|
|
|
|
|
:align: center
|
|
|
|
|
:width: 600
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
The "input ports" are implemented as event handlers ``onPush(elem,ctx)`` and ``onPull(ctx)`` while "output ports"
|
|
|
|
|
correspond to methods on the :class:`Context` object that is handed as a parameter to the event handlers. By calling
|
|
|
|
|
exactly one "output port" method we wire up these four ports in various ways which we demonstrate shortly.
|
|
|
|
|
|
|
|
|
|
.. warning::
|
|
|
|
|
There is one very important rule to remember when working with a ``Stage``. **Exactly one** method should be called
|
|
|
|
|
on the **currently passed** :class:`Context` **exactly once** and as the **last statement of the handler** where the return type
|
|
|
|
|
of the called method **matches the expected return type of the handler**. Any violation of this rule will
|
|
|
|
|
almost certainly result in unspecified behavior (in other words, it will break in spectacular ways). Exceptions
|
|
|
|
|
to this rule are the query methods ``isHolding()`` and ``isFinishing()``
|
|
|
|
|
|
|
|
|
|
To illustrate these concepts we create a small :class:`PushPullStage` that implements the ``map`` transformation.
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
.. image:: ../images/stage_map.png
|
|
|
|
|
:align: center
|
|
|
|
|
:width: 300
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
Map calls ``ctx.push()`` from the ``onPush()`` handler and it also calls ``ctx.pull()`` form the ``onPull``
|
|
|
|
|
handler resulting in the conceptual wiring above, and fully expressed in code below:
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#one-to-one
|
|
|
|
|
|
|
|
|
|
Map is a typical example of a one-to-one transformation of a stream. To demonstrate a many-to-one stage we will implement
|
|
|
|
|
filter. The conceptual wiring of ``Filter`` looks like this:
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
.. image:: ../images/stage_filter.png
|
|
|
|
|
:align: center
|
|
|
|
|
:width: 300
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
As we see above, if the given predicate matches the current element we are propagating it downwards, otherwise
|
|
|
|
|
we return the "ball" to our upstream so that we get the new element. This is achieved by modifying the map
|
|
|
|
|
example by adding a conditional in the ``onPush`` handler and decide between a ``ctx.pull()`` or ``ctx.push()`` call
|
|
|
|
|
(and of course not having a mapping ``f`` function).
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#many-to-one
|
|
|
|
|
|
|
|
|
|
To complete the picture we define a one-to-many transformation as the next step. We chose a straightforward example stage
|
|
|
|
|
that emits every upstream element twice downstream. The conceptual wiring of this stage looks like this:
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
.. image:: ../images/stage_doubler.png
|
|
|
|
|
:align: center
|
|
|
|
|
:width: 300
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
This is a stage that has state: the last element it has seen, and a flag ``oneLeft`` that indicates if we
|
|
|
|
|
have duplicated this last element already or not. Looking at the code below, the reader might notice that our ``onPull``
|
|
|
|
|
method is more complex than it is demonstrated by the figure above. The reason for this is completion handling, which we
|
|
|
|
|
will explain a little bit later. For now it is enough to look at the ``if(!ctx.isFinishing)`` block which
|
|
|
|
|
corresponds to the logic we expect by looking at the conceptual picture.
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#one-to-many
|
|
|
|
|
|
|
|
|
|
Finally, to demonstrate all of the stages above, we put them together into a processing chain, which conceptually
|
|
|
|
|
would correspond to the following structure:
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
.. image:: ../images/stage_chain.png
|
|
|
|
|
:align: center
|
|
|
|
|
:width: 650
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
In code this is only a few lines, using the ``transform`` method to inject our custom processing into a stream:
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#stage-chain
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
If we attempt to draw the sequence of events, it shows that there is one "event token"
|
|
|
|
|
in circulation in a potential chain of stages, just like our conceptual "railroad tracks" representation predicts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. image:: ../images/stage_msc_general.png
|
|
|
|
|
:align: center
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
Completion handling
|
|
|
|
|
^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
|
|
Completion handling usually (but not exclusively) comes into the picture when processing stages need to emit a few
|
|
|
|
|
more elements after their upstream source has been completed. We have seen an example of this in our ``Duplicator`` class
|
|
|
|
|
where the last element needs to be doubled even after the upstream neighbor stage has been completed. Since the
|
|
|
|
|
``onUpstreamFinish()`` handler expects a :class:`TerminationDirective` as the return type we are only allowed to call
|
|
|
|
|
``ctx.finish()``, ``ctx.fail()`` or ``ctx.absorbTermination()``. Since the first two of these available methods will
|
|
|
|
|
immediately terminate, our only option is ``absorbTermination()``. It is also clear from the return type of
|
|
|
|
|
``onUpstreamFinish`` that we cannot call ``ctx.push()`` but we need to emit elements somehow! The trick is that after
|
|
|
|
|
calling ``absorbTermination()`` the ``onPull()`` handler will be called eventually, and at the same time
|
|
|
|
|
``ctx.isFinishing`` will return true, indicating that ``ctx.pull()`` cannot be called anymore. Now we are free to
|
|
|
|
|
emit additional elementss and call ``ctx.finish()`` or ``ctx.pushAndFinish()`` eventually to finish processing.
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
The reason for this slightly complex termination sequence is that the underlying ``onComplete`` signal of
|
|
|
|
|
Reactive Streams may arrive without any pending demand, i.e. without respecting backpressure. This means that
|
|
|
|
|
our push/pull structure that was illustrated in the figure of our custom processing chain does not
|
|
|
|
|
apply to termination. Our neat model that is analogous to a ball that bounces back-and-forth in a
|
|
|
|
|
pipe (it bounces back on ``Filter``, ``Duplicator`` for example) cannot describe the termination signals. By calling
|
|
|
|
|
``absorbTermination()`` the execution environment checks if the conceptual token was *above* the current stage at
|
|
|
|
|
that time (which means that it will never come back, so the environment immediately calls ``onPull``) or it was
|
|
|
|
|
*below* (which means that it will come back eventually, so the environment does not need to call anything yet).
|
|
|
|
|
|
|
|
|
|
The first of the two scenarios is when a termination signal arrives after a stage passed the event to its downstream. As
|
|
|
|
|
we can see in the following diagram, there is no need to do anything by ``absorbTermination()`` since the black arrows
|
|
|
|
|
representing the movement of the "event token" is uninterrupted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. image:: ../images/stage_msc_absorb_1.png
|
|
|
|
|
:align: center
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In the second scenario the "event token" is somewhere upstream when the termination signal arrives. In this case
|
|
|
|
|
``absorbTermination`` needs to ensure that a new "event token" is generated replacing the old one that is forever gone
|
|
|
|
|
(since the upstream finished). This is done by calling the ``onPull()`` event handler of the stage.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. image:: ../images/stage_msc_absorb_2.png
|
|
|
|
|
:align: center
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Observe, that in both scenarios ``onPull()`` kicks off the continuation of the processing logic, the only difference is
|
|
|
|
|
whether it is the downstream or the ``absorbTermination()`` call that calls the event handler.
|
2015-02-05 10:38:00 +01:00
|
|
|
|
2015-09-02 16:46:37 +02:00
|
|
|
.. warning::
|
|
|
|
|
It is not allowed to call ``absorbTermination()`` from ``onDownstreamFinish()``. If the method is called anyway,
|
|
|
|
|
it will be logged at ``ERROR`` level, but no further action will be taken as at that point there is no active
|
|
|
|
|
downstream to propagate the error to. Cancellation in the upstream direction will continue undisturbed.
|
2015-02-05 10:38:00 +01:00
|
|
|
|
|
|
|
|
Using PushStage
|
|
|
|
|
---------------
|
|
|
|
|
|
|
|
|
|
Many one-to-one and many-to-one transformations do not need to override the ``onPull()`` handler at all since all
|
|
|
|
|
they do is just propagate the pull upwards. For such transformations it is better to extend PushStage directly. For
|
|
|
|
|
example our ``Map`` and ``Filter`` would look like this:
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#pushstage
|
|
|
|
|
|
|
|
|
|
The reason to use ``PushStage`` is not just cosmetic: internal optimizations rely on the fact that the onPull method
|
|
|
|
|
only calls ``ctx.pull()`` and allow the environment do process elements faster than without this knowledge. By
|
|
|
|
|
extending ``PushStage`` the environment can be sure that ``onPull()`` was not overridden since it is ``final`` on
|
|
|
|
|
``PushStage``.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Using StatefulStage
|
|
|
|
|
-------------------
|
|
|
|
|
|
|
|
|
|
On top of ``PushPullStage`` which is the most elementary and low-level abstraction and ``PushStage`` that is a
|
|
|
|
|
convenience class that also informs the environment about possible optimizations ``StatefulStage`` is a new tool that
|
|
|
|
|
builds on ``PushPullStage`` directly, adding various convenience methods on top of it. It is possible to explicitly
|
|
|
|
|
maintain state-machine like states using its ``become()`` method to encapsulates states explicitly. There is also
|
|
|
|
|
a handy ``emit()`` method that simplifies emitting multiple values given as an iterator. To demonstrate this feature
|
|
|
|
|
we reimplemented ``Duplicator`` in terms of a ``StatefulStage``:
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#doubler-stateful
|
|
|
|
|
|
|
|
|
|
Using DetachedStage
|
|
|
|
|
-------------------
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
The model described in previous sections, while conceptually simple, cannot describe all desired stages. The main
|
|
|
|
|
limitation is the "single-ball" (single "event token") model which prevents independent progress of an upstream and
|
|
|
|
|
downstream of a stage. Sometimes it is desirable to *detach* the progress (and therefore, rate) of the upstream and
|
|
|
|
|
downstream of a stage, synchronizing only when needed.
|
|
|
|
|
|
|
|
|
|
This is achieved in the model by representing a :class:`DetachedStage` as a *boundary* between two "single-ball" regions.
|
|
|
|
|
One immediate consequence of this difference is that **it is not allowed to call** ``ctx.pull()`` **from** ``onPull()`` **and
|
|
|
|
|
it is not allowed to call** ``ctx.push()`` **from** ``onPush()`` as such combinations would "steal" a token from one region
|
|
|
|
|
(resulting in zero tokens left) and would inject an unexpected second token to the other region. This is enforced
|
|
|
|
|
by the expected return types of these callback functions.
|
|
|
|
|
|
|
|
|
|
One of the important use-cases for :class:`DetachedStage` is to build buffer-like entities, that allow independent progress
|
|
|
|
|
of upstream and downstream stages when the buffer is not full or empty, and slowing down the appropriate side if the
|
|
|
|
|
buffer becomes empty or full. The next diagram illustrates the event sequence for a buffer with capacity of two elements.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. image:: ../images/stage_msc_buffer.png
|
|
|
|
|
:align: center
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The very first difference we can notice is that our ``Buffer`` stage is automatically pulling its upstream on
|
|
|
|
|
initialization. Remember that it is forbidden to call ``ctx.pull`` from ``onPull``, therefore it is the task of the
|
|
|
|
|
framework to kick off the first "event token" in the upstream region, which will remain there until the upstream stages
|
|
|
|
|
stop. The diagram distinguishes between the actions of the two regions by colors: *purple* arrows indicate the actions
|
|
|
|
|
involving the upstream "event token", while *red* arrows show the downstream region actions. This demonstrates the clear
|
|
|
|
|
separation of these regions, and the invariant that the number of tokens in the two regions are kept unchanged.
|
|
|
|
|
|
|
|
|
|
For buffer it is necessary to detach the two regions, but it is also necessary to sometimes hold back the upstream
|
|
|
|
|
or downstream. The new API calls that are available for :class:`DetachedStage` s are the various ``ctx.holdXXX()`` methods
|
|
|
|
|
, ``ctx.pushAndPull()`` and variants, and ``ctx.isHoldingXXX()``.
|
|
|
|
|
Calling ``ctx.holdXXX()`` from ``onPull()`` or ``onPush`` results in suspending the corresponding
|
|
|
|
|
region from progress, and temporarily taking ownership of the "event token". This state can be queried by ``ctx.isHolding()``
|
|
|
|
|
which will tell if the stage is currently holding a token or not. It is only allowed to suspend one of the regions, not
|
|
|
|
|
both, since that would disable all possible future events, resulting in a dead-lock. Releasing the held token is only
|
|
|
|
|
possible by calling ``ctx.pushAndPull()``. This is to ensure that both the held token is released, and the triggering region
|
|
|
|
|
gets its token back (one inbound token + one held token = two released tokens).
|
|
|
|
|
|
|
|
|
|
The following code example demonstrates the buffer class corresponding to the message sequence chart we discussed.
|
|
|
|
|
|
|
|
|
|
.. includecode:: ../../../akka-samples/akka-docs-java-lambda/src/test/java/docs/stream/FlowStagesDocTest.java#detached
|
2015-02-05 10:38:00 +01:00
|
|
|
|
2015-09-02 16:59:16 +02:00
|
|
|
.. warning::
|
|
|
|
|
If ``absorbTermination()`` is called on a :class:`DetachedStage` while it holds downstream (``isHoldingDownstream``
|
|
|
|
|
returns true) then ``onPull()`` will be called on the stage. This ensures that the stage does not end up in a
|
|
|
|
|
deadlocked case. Since at the point when the termination is absorbed there will be no way to get any callbacks because
|
|
|
|
|
the downstream is held, so the framework invokes onPull() to avoid this situation. This is similar to the termination
|
|
|
|
|
logic already shown for :class:`PushPullStage`.
|
|
|
|
|
|
2015-02-05 10:38:00 +01:00
|
|
|
Custom graph processing junctions
|
|
|
|
|
=================================
|
|
|
|
|
|
2015-10-21 17:52:11 +02:00
|
|
|
To extend available fan-in and fan-out structures (graph stages) Akka Streams include :class:`GraphStage`. This is an
|
|
|
|
|
advanced usage DSL that should only be needed in rare and special cases, documentation will be forthcoming in one of the
|
|
|
|
|
next releases.
|
2015-02-05 10:38:00 +01:00
|
|
|
|
2015-07-09 10:40:20 +02:00
|
|
|
Thread safety of custom processing stages
|
|
|
|
|
=========================================
|
|
|
|
|
|
|
|
|
|
All of the above custom stages (linear or graph) provide a few simple guarantees that implementors can rely on.
|
|
|
|
|
- The callbacks exposed by all of these classes are never called concurrently.
|
|
|
|
|
- The state encapsulated by these classes can be safely modified from the provided callbacks, without any further
|
|
|
|
|
synchronization.
|
|
|
|
|
|
2015-07-14 17:45:57 +03:00
|
|
|
In essence, the above guarantees are similar to what :class:`Actor` s provide, if one thinks of the state of a custom
|
2015-07-09 10:40:20 +02:00
|
|
|
stage as state of an actor, and the callbacks as the ``receive`` block of the actor.
|
|
|
|
|
|
|
|
|
|
.. warning::
|
2015-07-14 17:45:57 +03:00
|
|
|
It is **not safe** to access the state of any custom stage outside of the callbacks that it provides, just like it
|
2015-07-09 10:40:20 +02:00
|
|
|
is unsafe to access the state of an actor from the outside. This means that Future callbacks should **not close over**
|
|
|
|
|
internal state of custom stages because such access can be concurrent with the provided callbacks, leading to undefined
|
2015-07-14 17:45:57 +03:00
|
|
|
behavior.
|